ICS 111
File Input and Output (1/0)

 Reading from Files

» Writing to Files

» Text input

 Data I/O

« Command-Line Arguments

Computer Files

« After a program ends its run, all the values in the variables
are forgotten
* If desired, values can be stored persistently in files

- persistence means the value is remembered beyond the lifetime
of the program

- files can be copied and backed up to provide greater persistence
- backups are strongly recommended for any important files!

* Files have a name and possibly some data

 There are different types of data, including text data and
binary data

Reading a Text File

» A variable of type File represents a file name that we can open for reading or writing

Jjava.io.File readFrom = new java.io.File("input.txt");

java.util.Scanner in = new java.util.Scanner (readFrom) ;
while (in.hasNextLine()) A
String s = in.nextLine();

}

in.close();
» The constructor for File creates a way for the Scanner to access the file name

» The constructor for Scanner opens the file, which must be closed before the end of the
program

- closing is essential for output files, but not for input files
- opening (for reading) a file that doesn't exist is an error and results in an exception

* Java doesn't care whether the file name ends with .txt:
- as long as the code uses Scanner, Java accesses the file as a text file

File Names, File Chooser

often we want to give the user a dialog box for choosing a file:
javax.swing.JFileChooser gives us such dialog boxes

to ask the user to select a file:

JFileChooser ¢ = new JFileChooser();

if (c.showOpenDialog() == JFileChooser.APPROVE_OPTION) {
File selected = c.getSelectedFile();

¥
* For an output file, use showSaveDialog open :
instead of showOpenDialog Look n: |5 immagint M
[y screenshot from 2020-05-26 13-29-29.png
« After these calls, we do have to check o e ey v e
Whether the user Selected a ﬁle [y screenshot from 2020-09-30 06-33-39.png
Try this at home!!!

File Name: |

|
Files of Type: |AII Files |v|

Open || Cancel |

Escapes, Backslashes

* If a file name in your code has backslashes, each must be
preceded by a second backslash:

readFrom = new java.io.File("c:\\hw\\input.txt");
* A backslash in Java strings is the escape character
— you are familiar with newlines being written "\n"
— an escape character gives special meaning to the next character
- the escape character must itself be escaped when we want it in a string

* Most programming languages have escape characters, allowing
us, for example, to include the double quote character inside a
string:

String answer = "they said \"yes\", all is well";

Writing a Text File

A writable text file is created (or if it already exists, is emptied) by
creating a variable of type java.io.PrintWriter:

PrintWriter outf = new PrintWriter ("output.txt");
e Qutput files must be closed after we are done using them, or we may
lose data:

outf.close();

* In between creating and closing, we can use our usual print functions:
outf.println("This line goes into the file");

outf.printf ("This line too! counter is %d\n", counter)

* In a given program, input files must be separate from output files,
otherwise great confusion may ensue

Binary Data

» text data in a file is a sequence of bytes

binary data in a file is a sequence of bytes

in binary data, each byte may have any of the values between 0 and 255, inclusive
- in text data, bytes may only take the values of printable characters

binary data bytes may or may not be displayable as printable characters
I O0S S5 H@

it is OK to read or write a text file with operations for binary data

- it is not OK to read or write a binary file with text file operations!
- the results often won't make any sense

in general, all we want to do with binary data is make copies or compare it for
equality

there may be more specific uses for special kinds of binary data
especially image and audio files

eading and Writing Binary Data

* A java.io.InputStream provides a read operation which returns
the next byte

- the byte is represented as a positive integer 0..255
- read returns -1 if the read operation has reached the end of the input
- InputStream has constructors for files and URLs

 There are several types of java.io.OutputStream

 for this class, the interesting one is java.io.FileOutputStream,
which has a write operation

- write takes a byte, represented as an integer in 0..255
 remember to close output streams!

Constructors for Scanners

* \We have seen how to construct a scanner from a file name:
Scanner 1n = new Scanner (new File("input.txt"));
« Scanners can also be set up to parse strings:
Scanner readString =
new Scanner ("this 1s the 1nput");

* Or the contents of web pages:

Java.net .URL url = new
java.net .URL ("http://hawaii.edu");

Scanner readWebPage = new Scanner (url.openStream()) ;

« The scanners work the same no matter what the source

Java Scanner Methods

String in.next() reads the next word (blank-terminated)

String in.nextLine() reads the next line

double in.nextDouble() reads the next floating point
value

Int in.nextlInt() reads the next integer

every nextX method has a matching boolean hasNextX
method that returns whether it is possible to read the
corresponding value

- In.hasNext(), in.hasNextLine(), in.hasNextDouble(),
in.hasNextint()

Java Delimiters

String in.next() reads the next word

a word is non-blank characters followed by a blank, newline, or the end of input
- in this case, blank and newline are delimiters
characters that define the beginning or end of a word are known as delimiters

you can change delimiters for a scanner

useDelimiter(" yes ") uses the substring " yes " as the delimiter:
- given the input is "if we say yes | know yes is yes and no is no"
- in.next() will return the four strings "if we say", "l know", "is", "and no is no".

in.useDelimiter("") clears the delimiters and tells the scanner's next method to
return strings that are a single character long

- containing the next character in the input

Reqgular Expressions

useDelimiter can be told to use groups of characters as delimiters
[square brackets] identify groups of characters
* in.useDelimiter ("[0-9]"); uses any digit as the delimiter

* in.useDelimiter ("[.,;:]1"); tells the scanner that in.next() should return all the
input up to the next one of these punctuation marks

* in.useDelimiter ("[~a-zA-Z0-9]"); means to use as a delimiter any non-
alphanumeric character

- the initial ~ indicates a negation, so “use as delimiter any character that does not belong to the
character ranges in the brackets”

the argument to useDelimiter is a regular expression

regular expressions are a general way of capturing patterns in strings

regular expressions are more general than discussed here

regular expressions are used outside of Java in shell programming and in string matching

regular expressions are of interest in the theory of programming languages: part of the syntax of
language definitiions is usually expressed as regular expressions

Character Classes

» Several Java methods tell us whether a character is a digit, a letter, upper or lower case, etc
Character.isWhiteSpace(char c)
Character.isDigit(char c)
Character.isLetter(char c)
Character.isUpperCase(char c)
Character.isLowerCase(char c)

* In each case, these methods return a boolean that is true if the character belongs to that
group, and false otherwise

« Many more can be found at
https://docs.oracle.com/en/java/javase/l1/docs/api/java.base/java/lang/Character.html

« String.trim removes any initial or final blanks:
« String withBlanks =" Hello world “;
* String withoutBlanks = withBlanks.trim(); // withoutBlans is "Hello World"

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html

Parsing Numbers

* \We can parse a string to an integer or a double

 However, the number must fill the entire string
(except for any initial or terminating blanks):

* Double.parseDouble("3.1415") is fine
* Double.parseDouble(" 3.14+3") is not

* If using a scanner, can test with hasNextint() or
nasNextDouble() before calling nextint() or
nextDouble()

printf formats

* printf prints according to a format string

* % in the format string indicates a value taken from one of the later
arguments to printf:

- %s: print a string

- %d: print a decimal integer

- %f: print a floating point number such as 3.1

- %e: print a floating point number with the exponent, such as 3.1e+0

- %Q: print a floating point number with the best of the preceding two
notations

- %X: print an integer in hexadecimal
- %%: print a % sign (there is no later argument corresponding to %%)

printf (“my name is %s: %d + %f is %f£%%\n”, myName, 2, 3.0, 2.3);

rintf format width and alignment

* Between the % and the format character may be a number, which specifies
the format width (in characters)

* %3d, print an integer with one or two leading blanks if necessary

- examples: "1234", " 12", " 1"
- numbers that don't fit in the format width are still printed in their entirety

* %-3d, print an integer with one or two following blanks if necessary

- examples: "1234", "12 ", "1 "
* %03d, print an integer with one or two leading 0s if necessary
- examples: "1234", "012", "001"

* %5.2f, print a floating point number using (at least) 5 characters, with exactly
two digits after the decimal point

- examples: " 3.14", "139.00"
%(5d, print negative numbers in (parentheses)

Command-Line Arguments

 We have seen that the command-line arguments are
given to main in its array of strings parameter

 When an argument begins with a "-" character, it is
usually an option or a flag

- e.g. "-v" or "--verbose" to tell the program to print more
debugging information

 If argument order doesn't matter, we can process the
command-line arguments with an enhanced for loop:

for (String a: args) A
« Arguments are often file names

File Names In
Command-Line Arguments

Arguments are often file names. Here is a simple program that just prints the contents of all files
named in its arguments:

public static void main(String[] args) {
for (String a: args) {

printFileContents (a);

public static void printFileContents (String fileName)
Java.io.File f = new jJava.io.File(fileName);
Java.util.Scanner in = new java.util.Scanner (f);
while (in.hasNextLine()) A

System.out.println(in.nextLine());

i
» do this at home: try to run this program before going on to the next slide

Exceptions and throws

* The code on the preceding slide won't compile, because creating a scanner from a file may cause an exception
called FileNotFoundException

* An exception is said to be thrown
- later we will see how to catch exceptions!
* For now, we can keep the compiler happy by simply declaring the exceptions that each method may throw
public static void main (String[] args) throws java.io.FileNotFoundException {
for (String a: args) {

printFileContents (a) ;

public static void printFileContents (String fileName) throws java.io.FileNotFoundException {

java.lo.File f = new Jjava.io.File(fileName) ;
java.util.Scanner in = new Jjava.util.Scanner (f);
while (in.hasNextLine ()) {

System.out.println (in.nextLine ()) ;

Substitution Cipher

A simple way to encrypt is to just choose a letter a fixed
distance away from the letter we are encrypting
« Caesar cipher: A->D,B->E,...Z->C
- “hello world” becomes “khoor zruog”
- decryption uses the same substitution table, backwards
- this is an easy cipher to break, so it is no longer seriously used

* since English has 26 letters, we can swap the two halves of the
alphabet: A->M,B->N,..Z->L

- this is “rotl3”, where the letters are rotated through the alphabet by
13 positions

- then decryption is the same operation as encryption

Summary

* This lecture expands on previous knowledge about
text input and output

* Reading from files and writing to files is
Intentionally very similar to reading from the user
and printing to the display

« Scanners and parselnt/parseDouble provide many
ways of using user and file input, and printf
provides much flexibility for output

e |t Is easy to read and output files!

Try it at home: read a web page from a web server

- maybe

http://www2.hawaii.edu/~esb/2020fall.ics111/oc
t12-transcript.txt

- output it to the screen, and also save it to a file

http://www2.hawaii.edu/~esb/2020fall.ics111/oct12-transcript.txt
http://www2.hawaii.edu/~esb/2020fall.ics111/oct12-transcript.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

