
 1

Java Arrays, Part 2

● Multiple-Dimensional Arrays
● Type Parameters
● Array Lists
● Array Algorithms

 2

Two-Dimensional Arrays

● So far, every array we have seen has a single index
● A single index works well for many applications, but

not for representing 2-Dimensional data
● Instead, we can declare that an array has multiple

dimensions:
enum ChessPieces { Empty, Pawn, Rook, Knight, Bishop, Queen, King }

...

final int ROWS = 8;

final int COLUMNS = 8;

ChessPieces[][] chessboard = new ChessPieces [ROWS][COLUMNS];

 3

Matrices

● A mathematical matrix can be represented as a 2D array:

double[][] matrix = new double[15][17];
● You can then create a method for matrix multiplication:

public static double[][]

 matrixMultiply(double[][] m1, double[][] m2){

 if (m1[0].length != m2.length) {

 ... // different sizes, cannot multiply

 }

 double[][] result =

 new double[m1.length][m2[0].length];

 result[0][0] = ...

● The number of rows of a matrix m is m.length. The number of columns is
m[0].length

 4

Neighboring Elements

● When a two-dimensional array is representing properties of a
two-dimensional object (e.g. a picture), it is sometimes useful
to be able to compute the indices of neighboring elements

● Given the origin is at 0,0 in the upper left, for the element at i, j
– the element above it is at i-1, j
– the element to the left is at i, j-1
– the element below it is at i+1, j
– the element to the right is at i, j+1

● An exercise for you: give the positions of the elements at the
upper left corner, upper right corner, lower left corner, and
lower right corner

 5

Multi-Dimensional Arrays

● Java supports arrays with any number of
dimensions:

double[][][] cube =

 new double[10][10][10];

cube[9][9][9] = 3.1415;

double[][][][] spaceAndTime = ...

● These work the same as two-dimensional
arrays

 6

Non-Rectangular Arrays

● A two-dimensional array in Java is really an array of arrays
● The sub-arrays may all have different sizes:

String[][] a = new String[5][];

// lengths will be 1, 4, 7, 3, 6

for (int i = 0; i < 5; i++) {

 a[i] = new String[(i * 3) % 7 + 1];

}

● Such arrays are occasionally useful
– but are not common.

 7

Type Parameters

● When describing a sample implementation of the
Arrays.copyOf method, we used someType to represent
the type of the array that was being copied

● This is actually useful in real programs:
– when a type T, such as an array, stores elements of another

type U, we can say that T is parametrized over U
● The type equivalent of a variable is a type parameter
● Arrays are built-in to Java and the type of the array

element is part of the Java syntax, but when we create
other collection types we will parametrize them

 8

Type Parameters: Example

● ArrayList is a parametrized collection type
(java.util.ArrayList)

● Type parameters are written in angle brackets. Here we
declare a variable x to be an ArrayList containing strings:

ArrayList<String> x =

 new ArrayList<String>();

● in creating this new object, we need both new and ()
● Java is clever enough to figure out the second type

parameter, so it can be omitted:

ArrayList<String> x = new ArrayList<>();

 9

Type Parameters: Objects Only

● A type parameters can only be an Object type, we
cannot use int, double, char, boolean as type
parameter

● Because of this, an Object type has been defined
in Java for each of the basic types: Character,
Boolean, Byte, Short, Integer, Long, Float, Double

● These object types can be used as type
parameters:

ArrayList<Double> x = new ArrayList<>();

 10

Using the Object equivalents of
the basic types

● Because these object types are built-in to Java, Java can
automatically convert between the basic types and their equivalent
object types:

Boolean t = true;

if (t) { ...

● As you know, object variables are references to the memory where
the object value is actually stored

● The process of putting a basic type into an object is called boxing
● Java provides auto-boxing and auto-unboxing, so programmers in

general don't have to think about the distinction between, e.g. int
and Integer
– except that only Integer can be used as a type parameter!!!

 11

Array Lists

● Arrays are very convenient, and use an intuitive syntax supported by Java
● However, the length is fixed

– if we want to change the length, we have to copy the array
● ArrayList is a collection type that is designed to be similar to arrays, but:

– grows on demand
– has additional methods that provide convenient functionality for programmers

● ArrayList access does not have the convenient Java syntax that arrays have, and
is slightly slower, so programmers often still choose to use arrays even though
ArrayLists offer more functionality

● Just as in arrays and strings, the first index in an ArrayList is 0
● Just as with arrays and strings, ArrayLists can be used as parameter types and

method return types:

public static ArrayList<String> convert(ArrayList<Integer> a) { ...

 12

Array List methods: add

● ArrayList.add(value) adds value to the end of the
array list, extending the array list

● ArrayList.add(index, value) adds the value at the
given index, moving out of the way all the
elements with that index and higher

● so if an array list x has 1, 7, 33, 42, the call
x.add(2, 25) changes x to have 1, 7, 25, 33, 42

● Whereas for the same array list x with 1, 7, 33, 42,
x.add(999) changes x to have 1, 7, 33, 42, 999

 13

Array Lists: other methods

● all examples are with x having 1, 2, 3
● ArrayList.size() returns 3, the number of elements
● ArrayList.get(index) returns the value at that index: x.get(2) returns 3
● ArrayList.set(index, value) is like the assignment of an array element:

after x.set(0, 55), x has 55, 2, 3
● ArrayList.remove(index) removes the value at the given index,

moving the other elements to fill the gap
– after x.remove(1), x has 1, 3 and x.size() returns 2

● Copying array lists is accomplished by creating a new array list,
giving the old one as parameter:

ArrayList<String> myCopy = new ArrayList<String>(oldCopy);

 14

Array Lists: enhanced for

● The enhanced for loop works with
ArrayLists, and in general, with all Java
collection types
ArrayList<Double> x = new ArrayList<>();

...

for (Double e: x) {

total += e;

}

 15

Comparison of
Arrays, Strings, ArrayLists

● array.length, String.length(), ArrayList.size()
● 0 is always the first index
● a[n], String.charAt(n), ArrayList.get(n)
● a[n] = value; ArrayList.set(n, value);
● variable size: arrays need an additional variable,

ArrayLists do it naturally
● adding and removing elements: only in ArrayList

 16

Array Algorithms

● We have already seen a few array algorithms
– printing elements with separators (demonstrated in

class)
● Most of these algorithms work equally well with

arrays and array lists
– in general, we will refer to arrays unless specifically

talking about ArrayList
● Refer to the book (section 6.3) for a more

comprehensive list; only a few presented here

 17

Array Algorithms:
Linear Search

● There are many cases when we want to look through all of an array to find something
● If you imagine the elements of the array stretched out in a line, and starting from

element 0 to the last element, this is a linear search
● There are many forms of linear search, but imagine we just want to find a specific

value:

public static boolean contains(int[] a, int v) {

 for (int x: a) {

 if (v == x) {

 return true;

 }

 }

 return false;

}

●

 18

Array Algorithms:
Inserting or Removing Elements

● If we have enough room in the array, and want to move elements out of the way so we can insert a new
value, we can do so. Note that we have to move elements from the end of the array:

// the first inUse elements of a are in use. insert v at insertPos

// this code does not handle the case where the array needs to be resized

public static int insert(String[] a, int inUse, int insertPos, String v) {

 int copy = inUse;

 while (copy >= insertPos) { // move higher elements out of the way

 a[copy] = a[copy - 1];

 copy--;

 }

 a[insertPos] = v; // now insert the element

 return inUse+1; // return the new size

}

● remove is the same, but we must copy elements from low to high indices
– exercise: take a minute to write the code for remove

● the ArrayList add and remove methods do all this
– and also resizing the array, if add needs more room

 19

Array Algorithms:
Swapping Elements

● If you want to swap two elements of an array, you need a
temporary variable:

int[] a =

int x = ...

int y = ...

// now swap a[x] and a[y]

int temp = a[x];

a[x] = a[y];

a[y] = temp;

● The temporary variable is needed because we have to save the
value of a[x] before we can store the value of a[y] into it

 20

Array Algorithms:
Sorting

● Sorting an array means ordering its elements from low to
hight

● Java already has a method

Arrays.sort(a);

● We can also sort a partly-filled array:

Arrays.sort(a, 0, currentSize);

● ArrayList.sort(null) is also provided
– the null parameter is a sentinel to request sorting according to

the type's natural order
– a different parameter may specify a different sort order

 21

Summary

● Multi-dimensional arrays are arrays of arrays
– the sub-arrays may have different lengths, but

usually all have the same length
● collection types are parametrized on specific

Object types
– each basic type has a corresponding Object type
– and Java handles the conversion automatically

● Array lists have all the features of arrays but also
automatically extend and shrink to fit the contents

● Arrays, loops, and methods from the Java standard
library let us write many interesting and useful
programs!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

