
 1

ICS 111
Recursive Methods

● Example of recursive call
● Recursive methods
● Recursive thinking

 2

ICS 111
Making Problems Smaller

● Suppose you had the task of eating a stack of
pancakes

● It might seem like a huge task
● In the spirit of stepwise refinement, you might

say “I’ll eat the first pancake, then I’ll eat the
rest”

● So first you call the method to eat the first
pancake, then you call another method to eat the
rest of the pancakes

 3

ICS 111
Making Problems Smaller:

Java methods

public static void eatStackOfPancakes() {

if (pancakesExist()) {

eatTopPancake();
eatStackOfPancakes();

}

}
● the method to eat the rest of the pancakes is the same as the method to eat

all the pancakes!
● Here we have a method calling itself – known as a recursive call
● Java (and most other programming languages) supports recursive calls
● a method calling itself recursively is essentially the same as a method calling

another method

 4

ICS 111
Making problems smaller

● As we solve part of a problem, sometimes the rest
of the problem is just a smaller instance of the
original problem

● Examples in the book:
– cleaning a house
– printing a triangle

● To solve the smaller problem, why not use the
same method as we used to solve the bigger
problem?

 5

ICS 111
converting an integer to a string

● in Java, concatenating an integer to a string
automatically converts the integer to a
string

● what if we didn’t have that?
● it’s easy enough to convert the last digit (the

integer modulo 10) to a string
● so all we need is to convert to a string the

integer divided by 10

 6

ICS 111
converting an integer to a string

public static String intToString (int value) {

 String higherDigits = "";

 if (value >= 10) {

 higherDigits = intToString (value / 10);

 }

 return higherDigits + digitToString(value % 10);

}

● the integer stored in value is different for each of the
recursive calls
– if my value is 4567, in the intToString that I call, value will be

456
● we still need to define digitToString

 7

ICS 111
converting a digit to a string

public static String digitToString (int value) {

 switch (value) {

 case 0: return "0";

 case 1: return "1";

 case 2: return "2";

 case 3: return "3";

 case 4: return "4";

 case 5: return "5";

 case 6: return "6";

 case 7: return "7";

 case 8: return "8";

 case 9: return "9";

 }

 return "illegal parameter " + value + " to digitToString";

}

● each case ends with return, no need for break statements

 8

ICS 111
tracing intToString

public static String intToString (int value) {

 String higherDigits = "";

 if (value >= 10) {

 higherDigits = intToString (value / 10);

 }

 return higherDigits + digitToString(value % 10);

}

● we call intToString(543)
– value is 543 >= 10, so we call intToString(54)

● value is 54 >= 10, so we call intToString(5)
– value is 5, not >= 10, so we return "5"

● higherDigits "5" + digitToString(4) returns "54"

– higherDigits "54" + digitToString 3 returns "543"
● calls and returns are nested like russian dolls

 9

ICS 111
designing recursive methods

● Like a loop, a recursive method does “the same thing” over and over
again

● Like a loop, a recursive method must stop at some point
– infinite recursion causes stack overflow!

● Each recursive call should solve a smaller version of the problem
– and stop once the problem is small enough to be solved directly (such as
digitToString)

– the “size” of a problem is defined by the programmer’s understanding
– but in any case, there must be at least one stopping condition
– and each recursive call must get “closer” to this stopping condition

● So every recursive call must be executed conditionally, that is, only until
the problem is small enough to solve directly

 10

ICS 111
A mathematical example

● The factorial function (written “!”) is defined as:
– 1! = 1
– n! = n * (n – 1)! for n > 1

● this is a recursive definition
– like many mathematical definitions

● so the recursive implementation is straightforward:

public static int factorial(int n) {

 if (n <= 1) {

 return 1;

 }

 return n * factorial(n – 1);

}

● Note that factorial can also be implemented as a loop
– implementing it as a loop would be described as an iterative (rather than recursive) implementation

 11

ICS 111
Recursive Thinking

● As we solve part of a problem, sometimes the rest of
the problem is just a smaller instance of the original
problem

● So we have to figure out:
– which part of the work do we take care of here, vs which

part of the work is in the smaller instance of the problem?
– when do we stop the recursion?

● This is not too different from thinking about loops
● In fact, loops and recursion are theoretically equivalent

 12

Summary

● Recursion is indicated when, in
stepwise refinement, one of the
subproblems is a smaller instance of
the bigger problem

● A method can call another method,
or it can call itself – there is no
difference between the two types of
calls

● If a method calls itself, it must do so
conditionally in order to avoid infinite
recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

