ICS 111
Recursive Methods

 Example of recursive call
* Recursive methods

* Recursive thinking




ICS 111
Making Problems Smaller

* Suppose you had the task of eating a stack of
pancakes

It might seem like a huge task

* In the spirit of stepwise refinement, you might
say “I'll eat the first pancake, then I'll eat the
rest”

* So first you call the method to eat the first
pancake, then you call another method to eat the
rest of the pancakes



ICS 111
Making Problems Smaller:
Java methods

public static void eatStackOfPancakes () {
1f (pancakesExist ()) {

eatTopPancake () ;
eatStackOfPancakes () ;

}
}

* the method to eat the rest of the pancakes is the same as the method to eat
all the pancakes!

 Here we have a method calling itself - known as a recursive call
* Java (and most other programming languages) supports recursive calls

« a method calling itself recursively is essentially the same as a method calling
another method



ICS 111
Making problems smaller

* As we solve part of a problem, sometimes the rest
of the problem is just a smaller instance of the
original problem

 Examples in the book:

- cleaning a house
- printing a triangle
* To solve the smaller problem, why not use the

same method as we used to solve the bigger
problem?




ICS 111
converting an integer to a string

In Java, concatenating an integer to a string
automatically converts the integer to a
string

what if we didn’t have that?

it's easy enough to convert the last digit (the
iInteger modulo 10) to a string

so all we need is to convert to a string the
integer divided by 10




ICS 111
converting an integer to a string

public static String intToString (int wvalue) {
String higherDigits = "";
if (value >= 10) A
higherDigits = intToString (value / 10);

}
return higherDigits + digitToString(value % 10);

b

* the integer stored in value Is different for each of the
recursive calls

- if my value is 4567, in the intToString that | call, value will be
456

« we still need to define digitToString




switch
case
case
case
case
case
case
case
case
case
case

t
return

b

OW 0 J o U1 » W N — O

(value)
return
return
return
return
return
return
return
return
return

return

"illegal parameter "

public static String digitToString

{

"O";
"1";
"2";
"3";
"4";
"5";
"6";
"7";
"8";
"9";

ICS 111

+ value +

converting a digit to a string

(int wvalue) {

" to digitToString";

* each case ends with return, no need for break statements




ICS 111
tracing intToString

public static String intToString (int wvalue) {
String higherDigits = "";
if (value >= 10) {
higherDigits = intToString (value / 10);
}
return higherDigits + digitToString(value % 10);
t

« we call intToString (543)

- value is 543 >= 10, so we call intToString (54)

* value is 54 >= 10, so we call intToString (5)
- value is 5, not >= 10, so we return "5"
* higherDigits "5" + digitToString(4) returns "54"

- higherDigits "54" + digitToString 3 returns "543"
e calls and returns are nested like russian dolls

] BrokenSphere Wii—r;;edia Commons



ICS 111
designing recursive methods

Like a loop, a recursive method does “the same thing” over and over
again

Like a loop, a recursive method must stop at some point
— infinite recursion causes stack overflow!
Each recursive call should solve a smaller version of the problem

- and stop once the problem is small enough to be solved directly (such as
digitToString)

- the “size” of a problem is defined by the programmer’s understanding
- but in any case, there must be at least one stopping condition
- and each recursive call must get “closer” to this stopping condition

So every recursive call must be executed conditionally, that is, only until
the problem is small enough to solve directly




ICS 111
A mathematical example

* The factorial function (written “!”) is defined as:
-1 =1
-nl=n*(n-1)!forn>1
* this is a recursive definition
- like many mathematical definitions
» so the recursive implementation is straightforward:
public static int factorial (int n) A
if (n <= 1) {
return 1;

}

return n * factorial(n - 1);

}
* Note that factorial can also be implemented as a loop
- implementing it as a loop would be described as an iterative (rather than recursive) implementation




ICS 111
Recursive Thinking

* As we solve part of a problem, sometimes the rest of
the problem is just a smaller instance of the original
problem

SO0 we have to figure out:

- which part of the work do we take care of here, vs which
part of the work is in the smaller instance of the problem?

- when do we stop the recursion?
* This is not too different from thinking about loops

 In fact, loops and recursion are theoretically equivalent



Summary

» Recursion is indicated when, In
stepwise refinement, one of the
subproblems is a smaller instance of
the bigger problem

* A method can call another method,
or It can call itself - there is no
difference between the two types of
calls

e If a method calls itself, it must do so
conditionally in order to avoid infinite
recursion




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

