
  1

ICS 111
Drawing

● review: javax.swing.JComponent
● review: java.awt.Graphics, rectangles, 

ovals, lines
● text fields and text areas
● turtle graphics     
● vector graphics
● bitmap graphics



  2

review: javax.swing.JComponent

● JComponent is an abstract class with many useful 
subclasses, including:
– AbstractButton, the superclass for JButton, JToggleButton, 

and JMenuItem
– JPanel
– JLabel
– JOptionPane

● JComponent has a protected method

void paintComponent(Graphics g)

that subclasses may override
● paintComponent is called when the frame that a 

component has been added to, is displayed or resized

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JComponent.html


  3

review: java.awt.Graphics

● Graphics is the main class for drawing in awt and 
swing
– designed for bitmap graphic painting

● for normal drawing applications, we do not directly 
create a new Graphics object, instead we use the 
one given as the parameter to paintComponent
– or can call the component’s getGraphics()

● painting operations use the current color, current 
paint mode (XOR or Paint), and current font

void setColor(Color c)

●

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Graphics.html


  4

java.awt.Color

● Color defines colors using Red, Green, and Blue 
(RGB) values

● each of the RGB values goes from 0 (dark) to 255 
(bright)
– e.g. 0,0,0 is black, 128,128,128 is gray, 255,255,255 is 

white
● Color also pre-defines many colors
● including Color.BLACK, Color.GRAY, Color.WHITE
● and also Color.RED, Color.GREEN, Color.BLUE, 

Color.YELLOW, Color.MAGENTA, Color.CYAN, 
Color.PINK, Color.ORANGE

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Graphics.html


  5

java.awt.Color example

import java.awt.Color;

public class Colors extends javax.swing.JFrame {

  public Colors() {  // constructor

    final Color[] myColors = { Color.BLACK, Color.GRAY, Color.WHITE,

                               Color.RED, Color.GREEN, Color.BLUE,

                               Color.YELLOW, Color.MAGENTA, Color.CYAN,

                               Color.PINK, Color.ORANGE };

    // JFrame operations

    setTitle("java colors");

    setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

    setSize(myColors.length * 100, 100);

    // add a single JComponent which paints all the color blocks

    add(new javax.swing.JComponent() {

      protected void paintComponent(java.awt.Graphics g) {

        int offset = 0;  // where to put the color block, horizontally

        for (Color c: myColors) {

          g.setColor(c);

          g.fillRect(offset, 0, 100, 100);

          offset += 100;

        }

      }

    });

    setVisible(true);

  }

  // open a window and display our predefined colors

  public static void main(String[] a) {

    Colors colorsObject = new Colors();

  }

}



  6

review: rectangles, ovals, lines

● these are primitives in java.awt.Graphics
● fillRect and drawRect take as parameters: x, y, width, 

height
– as is conventional for graphics, y starts at the top of the 

window and grows downwards
● fillOval and drawOval take the same parameters as 

defining the bounding box of the oval
– a circle has width == height

● drawLine takes as parameters the x and y of the two 
endpoints
– drawLine(0, 0, 100, 100) draws a diagonal line
– lines always have thickness 1



  7

drawing text and images

● drawString(String text, int x, int y)
● the x,y position is the lower left position of the baseline of the text

– letters such as g, j, p, q, y may extend below the baseline
● the text is drawn in the current color and current font
● the font is defined as a java.awt.Font
● a font always has a size
● a font has a style, such as plain, bold or italic
● Java has five logical fonts which should be available in any Java 

implementation.  Portable Java code should only use one of these:
– Serif, SansSerif, Monospaced, Dialog, DialogInput

● alternatively, java.awt.GraphicsEnvironment.getAllFonts() returns all 
fonts available in the current environment

● java.awt.Graphics.drawImage is similar to fillRect, but takes an image, 
possibly scaling it to fit

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Font.html


  8

text fields

● the JTextField class allows the user to enter text

int width = 50; // a 50-character field

javax.swing.JTextField tf =

  new javax.swing.JTextField(width);

...

// in actionPerformed:

String value = tf.getText();

● the field is limited to a single line
● the field is unlabeled – use a JLabel to add 

information
– it is possible to set a tooltip

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JTextField.html


  9

text areas

● unlike a text field, a JTextArea allows multiple lines
– the constructor takes a number of rows and a number of 

columns:
JTextArea ta = new JTextArea(10, 80); // 10 lines 
of 80 characters

● newlines – "\n" – indicate the end of a line and the 
start of a new

● text areas may be editable or read-only

ta.setEditable(false);

– text fields can also be set read-only
● the code can still change a text area that is not 

editable by the user
●

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JTextArea.html


  10

scroll panes

● a text area, or any other Component, can 
be decorated with scroll bars by creating 
a JScrollPane with that component as the 
argument to the constructor
JTextArea ta = . . .

JScrollPane sp = new JScrollPane(ta);

panel.add(sp);

● adding the scroll pain makes the text 
area available, with scroll bars around it

https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/javax/swing/JScrollPane.html


  11

turtle graphics: history

● in the 1960s, the Logo language was created 
to teach children how to program

● part of the fun was to program a mechanical 
turtle to move around a large sheet of paper

● wherever the turtle put its pen down, it 
would create part of a drawing

● not everybody owns large sheets of paper 
and a mechanical turtle, so turtle graphics 
can also be used on a screen



  12

turtle graphics: principles

● at any given time, the turtle has a position and direction
● turtle commands include:

– turn a given number of degrees
– move a certain number of steps with the pen down
– forward a certain number of steps with the pen up
– resize the step

● notice that no coordinates are needed!
● straight lines are drawn by moving a given number of steps with the pen down
● curves are drawn by moving a small distance, then turning a small angle, and 

repeating in a loop
– to draw a spiral, increase the step size each time around the loop

● turtle graphics make it easy to draw curves that are harder in other systems
– and polygons are easy if we know all the angles and lengths
– but filling an area with turtle graphics is slow

● Python has a turtle graphics library
– Java does not have a standard turtle graphics library



  13

vector graphics

● review: some of the earliest computer graphic displays 
were vector based

● steerable electronic beams in a cathode ray tube can 
easily be made to draw straight lines
– e.g. the lines in an old TV

● curves are harder but possible
● graphic primitives (e.g. drawLine and drawArc in 

java.awt.Graphics) are often inspired by what can be done 
with vector graphics

● in vector graphics, outlines are easy, filling areas is very 
expensive and possibly (depending on the medium) not 
very satisfactory



  14

bitmap graphics

● review: some computers have used bitmap graphics since the 
Xerox Alto in the 1970s

● a bitmap is an array of bits
● some bitmaps are automatically displayed on a screen by 

specialized hardware
– most modern display devices and printers use bitmap graphics

● fillRectangle and copyRectangle are the basic bitmap graphic 
operations
– to render a character in a font, copy a rectangle from the font 

bitmap to the displayed bitmap
– Graphics.drawImage copies a rectangle from the image bitmap to 

the displayed bitmap
● some operations are pixel based, for example, drawing a line

– setting a pixel is like filling a 1x1 rectangle
– if you look at a slanted line very closely, you can see it is jagged

● some operations, such as image resizing, are harder and require 
pixel-by-pixel computations



  15

Summary

● the paintComponent method of 
JComponent gives us a Graphics object 
that allows us to draw simple geometric 
shapes, text, and images

● when working with a JFrame or JPanel, can 
have text fields or text areas

● we can encapsulate any JComponent in a 
JScrollFrame

● bitmap graphics is very common, but is 
complemented by other graphics 
programming styles, including vector 
graphics and turtle graphics


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

