
 1

ICS 111
Event-Oriented Programming

● GUI interaction model
● Events
● Embedded Systems
● The package java.awt.event
● Inner Classes
● Anonymous Inner Classes

 2

GUI Interaction Model

● One of the advantages of a GUI over text I/O is that the
user can do things in different orders
– for example, if multiple text fields and selections are

present, the user can fill them out and select in any
sequence

– most of the time, the user may select any menu item
● each such interaction may require interaction with the

program, which means that the GUI (the Java runtime
system) must be able to call a method in your program

● such a call reflects a user interaction event
● a program must be able to handle such events in any

order

 3

Event-Oriented Programming

● In most programs so far, the programmer decides the
order in which operations are done

● but when a program interacts with the user, the user
determines the order of events
– when a program in a device interacts with the real world,

the real world determines the order of external events
● an event-oriented program program must:

– listen for incoming events
– respond appropriately to each event

● this is the part where the programmer can decide which
operations should be part of the response

– keep track of any information needed to respond
●

 4

Event-Oriented Programming for
Embedded Systems

● The Internet of Things (IoT) is the collection of connected devices
that operate more or less autonomously
– this includes smart speakers, vehicle control systems, remote sensors,

and everything other “smart” device that operates mostly
autonomously

– another term for such devices is embedded systems
● embedded systems must respond to events in their environment
● when idle (not responding) they should save energy by not doing

any processing
● events may include changes in the physical world, vocal calls to

wake up, and incoming network traffic
● some embedded systems, including vehicle control systems

have to respond within a specific time, or risk failure: these are
real-time systems

 5

The package java.awt.event

● This package provides almost 20 interfaces and classes, each with a
name ending in ...Listener

● to handle events, we must first register a Listener, a method that will
be called when the event is detected

● ActionListener is an interface that requires the method

void actionPerformed(ActionEvent e)

– a class that implements ActionListener, provides an actionPerformed method
– actionPerformed will be called once for every matching event

● to listen for a button event, call the button’s addActionListener
method, giving as parameter any object that implements the
ActionListener interface

● the GUI calls the actionPerformed method when the button is clicked
● an example is on the next slide

 6

ActionListener example

public class PrintButtonClicks

 implements java.awt.event.ActionListener {

 public void

 actionPerformed (java.awt.event.ActionEvent e)

 {

 System.out.println("button clicked!");

 }

}

javax.swing.JButton b =

 new javax.swing.JButton("click here");

...

b.addActionListener(new PrintButtonClicks());

 7

Unsatisfactory Ways of
implementing action listeners

● creating a new class for every button that
you listen to can lead to having lots of
classes

● also, a button listener should have access to
the instance variables of the class (call it C)
that has the graphics code

● one answer is to have the class C implement
ActionListener and provide actionPerformed

● problem: this does not work well when you
have multiple buttons
– each class (such as C) can only provide a

single actionPerformed method

 8

Inner Classes

● instead of having one-class-per-button or
trying to squeeze all the functionality of all
the action listeners into a single method in
the main class, it is better to create an
inner class for each action listener

● an inner class is a class definition that is
inside another class

● we can have as many of these inner
classes as we need

● the methods of the inner class have access
to the instance variables of the enclosing
class

 9

Inner Class Syntax Example

public class Outer {

 int v1 = 99;

 String v2 = "hello world";

 Inner1 i1;

 Inner2 i2;

 class Inner1 {

 public void m1() {

 System.out.println("v2 is " + v2);

 }

 }

 class Inner2 {

 ...

 }

 public Outer() {

 i1 = new Inner1();

 i1.m1();

 }

 10

Where to define Inner Classes

● inner classes are commonly defined inside
top-level classes

● this is not a requirement – inner classes could
be defined anywhere, even inside a method

● if defined inside a method, only that method
has access to the inner class

● and the inner class only has access to any
final instance variables

● final instance variables cannot be assigned
to, but the object they refer to can change
– e.g. if the final instance variable refers to an

ArrayList, when can add values to the array list

 11

ActionListener example with an
Inner Class

public class AllMyGraphics {

 javax.swing.JButton b =

 new javax.swing.JButton("click here");

 class PrintButtonClicks

 implements java.awt.event.ActionListener {

 public void

 actionPerformed (java.awt.event.ActionEvent e) {

 System.out.println("button clicked! button " + b +

 ", event " + e);

 }

 }

 public AllMyGraphics() {

 ...

 b.addActionListener(new PrintButtonClicks());

 }

 12

Anonymous Inner Classes

● sometimes an inner class is only
used once, such as for an action
listener

● then, it is not necessary to give the
class a name

● in this case, we can use as a
constructor the name of an interface
that this anonymous class
implements

 13

ActionListener example:
Anonymous Inner Class inside a

method
public class AllMyGraphics {

 final javax.swing.JButton b =

 new javax.swing.JButton("click here");

 public AllMyGraphics() {

 ...

 b.addActionListener(new java.awt.event.ActionListener() {

 public void

 actionPerformed (java.awt.event.ActionEvent e)

 {

 System.out.println("button clicked! button " + b +

 ", event " + e);

 } // ends actionPerformed

 }); // ends the anonymous inner class

 } // ends the no-arguments constructor

 }

 14

Summary

● events happen!
● event-handling code is called by the system (the

system that implements the GUI) when a user takes
a specific action

● different events may call different methods
– or may all call the same method, and the event

would be used to figure out which event happened
● inner classes are convenient when the alternative

would be many small classes
● inner classes may be defined inside methods, and

then can only access final instance variables
● inner classes may be anonymous
● see the code examples on the course web page

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

