ICS 111
Event-Oriented Programming

* GUI interaction model
 Events

« Embedded Systems

 The package java.awt.event
* Inner Classes

 Anonymous Inner Classes




GUI Interaction Model

One of the advantages of a GUI over text I/O is that the
user can do things in different orders

- for example, if multiple text fields and selections are
present, the user can fill them out and select in any
sequence

- most of the time, the user may select any menu item

each such interaction may require interaction with the
program, which means that the GUI (the Java runtime
system) must be able to call a method in your program

such a call reflects a user interaction event

a program must be able to handle such events in any
order




Event-Oriented Programming

* In most programs so far, the programmer decides the
order in which operations are done

 but when a program interacts with the user, the user
determines the order of events

- when a program in a device interacts with the real world,
the real world determines the order of external events

e an event-oriented program program must:

- listen for incoming events

- respond appropriately to each event

* this is the part where the programmer can decide which
operations should be part of the response

- keep track of any information needed to respond




vent-Oriented Programming for
Embedded Systems

 The Internet of Things (loT) is the collection of connected devices
that operate more or less autonomously

- this includes smart speakers, vehicle control systems, remote sensors,
and everything other “smart” device that operates mostly
autonomously

- another term for such devices is embedded systems
« embedded systems must respond to events in their environment

 when idle (not responding) they should save energy by not doing
any processing

« events may include changes in the physical world, vocal calls to
wake up, and incoming network traffic

« some embedded systems, including vehicle control systems
have to respond within a specific time, or risk failure: these are
eal-time systems



The package java.awt.event

* This package provides almost 20 interfaces and classes, each with a
name ending in ...Listener

« to handle events, we must first register a Listener, a method that will
be called when the event is detected

« ActionListener is an interface that requires the method

vold actionPerformed (ActionEvent e)
- a class that implements ActionListener, provides an actionPerformed method
- actionPerformed will be called once for every matching event

e to listen for a button event, call the button’s addActionListener
method, giving as parameter any object that implements the
ActionListener interface

 the GUI calls the actionPerformed method when the button is clicked
* an example is on the next slide



ActionListener example

public class PrintButtonClicks
implements java.awt.event.ActionListener {
public void

actionPerformed (java.awt.event.ActionEvent e)

System.out.println ("button clicked!");

Javax.swing.JButton b =

new javax.swing.JButton ("click here");

.addActionlistener (new PrintButtonClicks());




Unsatisfactory Ways of
Implementing action listeners

* creating a new class for every button that
you listen to can lead to having lots of
classes

* also, a button listener should have access to
the instance variables of the class (call it C)
that has the graphics code

* one answer is to have the class C implement
ActionListener and provide actionPerformed

* problem: this does not work well when you
have multiple buttons

— each class (such as C) can only provide a
single actionPerformed method



Inner Classes

* instead of having one-class-per-button or
trying to squeeze all the functionality of all
the action listeners into a single method in
the main class, it is better to create an
inner class for each action listener

e an inner class is a class definition that is
Inside another class

 we can have as many of these inner
classes as we need

 the methods of the inner class have access
to the instance variables of the enclosing
class



Inner Class Syntax Example

public class Outer {
int vl = 99;
String vZ2 = "hello world";
Innerl 1i1;
Inner2 1i2;
class Innerl A
public void ml () {

System.out.println ("v2 is " + v2);

}

class Inner2 {

t

public Outer () {

11 = new Innerl();
il.ml();




Where to define Inner Classes

* inner classes are commonly defined inside
top-level classes

 this is not a requirement - inner classes could
be defined anywhere, even inside a method

o if defined inside a method, only that method
has access to the inner class

* and the inner class only has access to any
final Instance variables

* final instance variables cannot be assigned
to, but the object they refer to can change

- e.q. if the final instance variable refers to an
ArrayList, when can add values to the array list




ActionListener example with an
Inner Class

public class AllMyGraphics {
Javax.swing.JButton b =
new Jjavax.swing.JButton ("click here");
class PrintButtonClicks
implements java.awt.event.ActionListener {
public void
actionPerformed (java.awt.event.ActionEvent e) {
System.out.println ("button clicked! button " + b +

", event " + e);

}
public AllMyGraphics () {

b.addActionlListener (new PrintButtonClicks ());




Anonymous Inner Classes

 sometimes an inner class is only
used once, such as for an action
listener

* then, It is not necessary to give the
class a name

* In this case, we can use as a
constructor the name of an interface
that this anonymous class

iImplements




ActionListener example:
Anonymous Inner Class inside a
method

public class AllMyGraphics {
final javax.swing.JButton b =
new javax.swing.JButton("click here");
public AllMyGraphics () A

b.addActionlListener (new java.awt.event.ActionListener () {

public void
actionPerformed (java.awt.event.ActionEvent e)
{
System.out.println ("button clicked! button " + b +
", event " + e);
} // ends actionPerformed
1) ; // ends the anonymous inner class

// ends the no—arguments constructor




Summary

* events happen!

« event-handling code is called by the system (the
system that implements the GUI) when a user takes
a specific action

 different events may call different methods

- or may all call the same method, and the event
would be used to figure out which event happened

* inner classes are convenient when the alternative
would be many small classes

* inner classes may be defined inside methods, and
then can only access f£inal instance variables

Inner classes may be anonymous
see the code examples on the course web page



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

