ICS 111
Comparisons, Types, Interfaces,
Packages

* Review: Object references,
comparisons, and equality

* Type operators
* Type parameters
* Java Interfaces
* Java packages




Review: Object References

* The toString method of the Object class, called automatically by Java when a String is needed (such as for println) prints out
the class of the object and the hash code (memory address) in hexadecimal:

public class x {
public static void main (String[] a) {

System.out .println (a) ;

x b = new x();
X c = b;
x d = new x();

System.out .println (b) ;
System.out .println (c);

System.out.println (d);

}
* the result (on my system) is:
[Ljava.lang.String; @d716361
x@6ff3c5b5
xQ@6f£f3c5b5
x@3764951d
» each object, including the array, has its own address. b and c refer to the same object, so they have the same address

* try this at home!




Review: Equality Comparison

* the == operator evaluates to true if two object references refer to the same object
- or if both are null, as in
if (x == null) A
» the Object equals instance method is the same as ==
* equals methods from other classes may:
- return true if the objects are ==
- return true if the objects are != but their contents “match”
boolean equals (Object x) A

if (x == null) { return false; }

if (this == x) { return true; }

if (getClass() !'= x.getClass()) { return false; }

MyType xx = (MyType)Xx;

if (myInstanceVariable == xx.myInstanceVariable) {return true; }

return myInstanceVariable.equals (xx.myInstanceVariable;

I
 the last statement assumes mylnstanceVariable is never null - if it could be null, we need an additional test

« if there is more than one instance variable, the last two statements would have to be replaced by code to test
equality of all the instance variables, perhaps in a loop



Type/Class Comparisons

* in the previous example we used the getClass() method of Object

» this means we can compare different class objects for equality!

* but remember: with polymorphism, each object may be an instance of more than one class
* so instead of the getClass method, we can use the instanceof operator

 to test whether an object is an instance of a specific class:

if (obj instanceof Class) { ..

* this is useful, because otherwise, casting an Object to the type of one of its subclasses may generate a
java.lang.ClassCastException

- to avoid the exception, use instanceof:

String a = new String("hello world");
Object b = a;
String ¢ = (b instanceof String ? (String)b : null);

* here b is an Object reference referring to a String object, so b instanceof String returns true, and
(String)b casts the object b to a String value

* note that b == c is true because b and c refer to the same underlying object
- even though be and c have different types!


https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#getClass()

Type Parameters

 classes such as ArrayList are parametrized on the type of Object that they
store

 the class declaration uses a type variable, generally written with a single
uppercase letter (T or E are common)

» the generic type T is used in the code as if it were an actual type
public class myList<T> {
private java.util.ArrayList<T> data;
public myList () {

data = new Java.util.ArrayList<T>();

}

» there are some limitations to using type variables - for example, declaring an
array of T is complicated




Java Interfaces

* a Java interface is a list of method headers

* a Java class can declare that it implements an interface (or
more than one)

- the compiler then checks that the methods in the interface are
implemented by the class

« for example, String implements three interfaces: Serializable,
CharSequence, Comparable<String>

- CharSequence requires the charAt() method

* ArrayList<E> implements six interfaces: Serializable,
Cloneable, Iterable<E>, Collection<E>, List<E>,
RandomAccess




Syntax: Java Interfaces

public interface InterfaceName {
void methodl (String argl);
String method2 () ;

b
» use the keyword interface rather than class

 all method declarations in an interface are public and abstract

* an interface cannot have static methods

* an interface may declare constants (final variables) with their values

» the keyword implements declares that a class implements an interface:

public class ClassName implements InterfaceName {

multiple comma-separated interfaces can be listed




the Comparable Interface

* this is java.lang.Comparable<T>
public interface Comparable<T> {
int compareTo (T) ;
}
« compareTo returns an integer n that is:

0 if equals() returns true
n > 0 if this > the argument
n < 0O if this < the argument

« compareTo can be used to compare objects, rather than just numbers

* the Arrays.sort method can sort an array of any class that implement the
Comparable interface

- this includes String, but does not include Object



using interfaces

when a method m1 takes a parameter x and calls x.m2()
* it may be a good idea to define an interface Interface that only lists the method m2
 the type of the parameter to m1 can be specified as being Interface
« example using Comparable:

public boolean isGreater (Comparable<String> arg) A

return arg.compareTo ("Hello world") > 0O;
t

* here, the type of the parameter arg is specified using an interface (Comparable)
rather than a class

- really, in any type declaration, it's OK to use an interface wherever a class would be used

« and any object whose class implements Comparable<String> can be used as an
argument to the isGreater method

for example, it is fine call isGreater with a string argument




function objects in Java

Suppose you are implementing a method m1 that operates on a parameter x of type Object
m1 calls a method m2 that depends on the type of x

if the Object provides m2, all is well: this is what object-oriented programming is all about
- and is similar to the example on the previous slide, except that the parameter has type Object
but Object only provides a limited selection of methods. What to do in other cases?

e answer: give ml an additional parameter vy, of a class c (or implementing an interface c) that provides
the method m2

* example using a class c that has a method getValue():

public boolean isGreater (Object arg, c function) {
return c.getValue (arqg);
}
* here, the argument function is being used just for the methods it provides access to

» the book has a good example in Special Topic 9.9: when computing an average, we would like to
compute an average over arbitrary objects in an array, but to compute an average we need a method
(m2) to give us a “measure” or “value” for each object

- all the objects in an array have the same type, so the same method (c.m2) can give us that measure for every
object in the array



Java Packages

* real programs usually include multiple classes in multiple files

* suppose you create a class HelloWorld

* your co-worker creates a different class HelloWorld

* by the end of the development process, you’'d like your two programs to work together

» you could always rename one of the two packages, but sometimes that’'s not so easy:
- one or both might be in a standard library that you can’t change
- changing either one might require changing lots of other code
* so instead, Java allows you to declare that your class is in a package:
package edu.hawaii.esb.example;
- the package declaration should come first in a file, and there can only be one per file
- Java package names should be unique!
* we've seen many packages before, including java.lang and java.util

» source code in the same package is generally found in the same folder (same directory)



Using classes defined in
Java Packages

* you have seen this before: java.util.ArrayList<String>

- anything in java.lang (such as java.lang.String). is automatically imported
- in the example on the preceding slide, use edu.hawaii.esb.example.HelloWorld

to make the code more readable, you can import packages:

import java.util.¥*;

ArrayList<String>

you can import any number of packages
- generally the import statements are all at the top of the source file
* right after the package declaration (if any)
too few import declarations make the code very precise, but much longer

too many import declarations make the code hard to understand for
anyone who is not familiar with all the packages




ava Packages: more information

* this material is not in the book. A few
references:

- the wikipedia page Java package
- the Java tutorials

- this guide provides many details of package
declaration and usage, including access to
protected methods and variables by code in the
same class

- and many more!



https://en.wikipedia.org/wiki/Java_package
https://docs.oracle.com/javase/tutorial/java/concepts/package.html
https://www.javaguides.net/2018/09/packages-in-java-with-examples.html

Summary

 we can do a lot of Java programming without knowing
much about memory

* pbut we do have to understand what it means when two
object references refer to the same object

* reviewed .equals and .compareTo

 brief introduction to type comparisons and
parametrized types

* interfaces specify what public methods a class provides

- Interface names can be used instead of class names
In type declarations

* Java packages allow us to structure our programs in
different files and folders/directories

- and to uniquely identify even classes with the same
name



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

