
 1

ICS 111
Comparisons, Types, Interfaces,

Packages

● Review: Object references,
comparisons, and equality

● Type operators
● Type parameters
● Java interfaces
● Java packages

 2

Review: Object References

● The toString method of the Object class, called automatically by Java when a String is needed (such as for println) prints out
the class of the object and the hash code (memory address) in hexadecimal:

public class x {

 public static void main(String[] a) {

 System.out.println(a);

 x b = new x();

 x c = b;

 x d = new x();

 System.out.println(b);

 System.out.println(c);

 System.out.println(d);

 }

}

● the result (on my system) is:

[Ljava.lang.String;@d716361

x@6ff3c5b5

x@6ff3c5b5

x@3764951d

● each object, including the array, has its own address. b and c refer to the same object, so they have the same address
● try this at home!

 3

Review: Equality Comparison

● the == operator evaluates to true if two object references refer to the same object
– or if both are null, as in
if (x == null) { ...

● the Object equals instance method is the same as ==
● equals methods from other classes may:

– return true if the objects are ==
– return true if the objects are != but their contents “match”

boolean equals(Object x) {

 if (x == null) { return false; }

 if (this == x) { return true; }

 if (getClass() != x.getClass()) { return false; }

 MyType xx = (MyType)x;

 if (myInstanceVariable == xx.myInstanceVariable) {return true; }

 return myInstanceVariable.equals(xx.myInstanceVariable;

}

● the last statement assumes myInstanceVariable is never null – if it could be null, we need an additional test
● if there is more than one instance variable, the last two statements would have to be replaced by code to test

equality of all the instance variables, perhaps in a loop

 4

Type/Class Comparisons

● in the previous example we used the getClass() method of Object
● this means we can compare different class objects for equality!
● but remember: with polymorphism, each object may be an instance of more than one class
● so instead of the getClass method, we can use the instanceof operator
● to test whether an object is an instance of a specific class:

if (obj instanceof Class) { …

● this is useful, because otherwise, casting an Object to the type of one of its subclasses may generate a
java.lang.ClassCastException
– to avoid the exception, use instanceof:

 String a = new String("hello world");

 Object b = a;

 String c = (b instanceof String ? (String)b : null);

● here b is an Object reference referring to a String object, so b instanceof String returns true, and
(String)b casts the object b to a String value

● note that b == c is true because b and c refer to the same underlying object
– even though be and c have different types!

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#getClass()

 5

Type Parameters

● classes such as ArrayList are parametrized on the type of Object that they
store

● the class declaration uses a type variable, generally written with a single
uppercase letter (T or E are common)

● the generic type T is used in the code as if it were an actual type

public class myList<T> {

 private java.util.ArrayList<T> data;

 public myList() {

 data = new java.util.ArrayList<T>();

 }

}

● there are some limitations to using type variables – for example, declaring an
array of T is complicated

 6

Java Interfaces

● a Java interface is a list of method headers
● a Java class can declare that it implements an interface (or

more than one)
– the compiler then checks that the methods in the interface are

implemented by the class
● for example, String implements three interfaces: Serializable,

CharSequence, Comparable<String>
– CharSequence requires the charAt() method

● ArrayList<E> implements six interfaces: Serializable,
Cloneable, Iterable<E>, Collection<E>, List<E>,
RandomAccess

 7

Syntax: Java Interfaces

public interface InterfaceName {

 void method1(String arg1);

 String method2();

}

● use the keyword interface rather than class
● all method declarations in an interface are public and abstract
● an interface cannot have static methods
● an interface may declare constants (final variables) with their values
● the keyword implements declares that a class implements an interface:

public class ClassName implements InterfaceName {

 ...

● multiple comma-separated interfaces can be listed

 8

the Comparable Interface

● this is java.lang.Comparable<T>

public interface Comparable<T> {

 int compareTo(T);

}

● compareTo returns an integer n that is:

0 if equals() returns true

n > 0 if this > the argument

n < 0 if this < the argument
● compareTo can be used to compare objects, rather than just numbers
● the Arrays.sort method can sort an array of any class that implement the

Comparable interface
– this includes String, but does not include Object

 9

using interfaces

● when a method m1 takes a parameter x and calls x.m2()
● it may be a good idea to define an interface Interface that only lists the method m2
● the type of the parameter to m1 can be specified as being Interface
● example using Comparable:

public boolean isGreater(Comparable<String> arg) {

 return arg.compareTo("Hello world") > 0;

}

● here, the type of the parameter arg is specified using an interface (Comparable)
rather than a class
– really, in any type declaration, it’s OK to use an interface wherever a class would be used

● and any object whose class implements Comparable<String> can be used as an
argument to the isGreater method

● for example, it is fine call isGreater with a String argument

 10

function objects in Java

● Suppose you are implementing a method m1 that operates on a parameter x of type Object
● m1 calls a method m2 that depends on the type of x
● if the Object provides m2, all is well: this is what object-oriented programming is all about

– and is similar to the example on the previous slide, except that the parameter has type Object
● but Object only provides a limited selection of methods. What to do in other cases?
● answer: give m1 an additional parameter y, of a class c (or implementing an interface c) that provides

the method m2
● example using a class c that has a method getValue():

public boolean isGreater(Object arg, c function) {

 return c.getValue(arg);

}

● here, the argument function is being used just for the methods it provides access to
● the book has a good example in Special Topic 9.9: when computing an average, we would like to

compute an average over arbitrary objects in an array, but to compute an average we need a method
(m2) to give us a “measure” or “value” for each object
– all the objects in an array have the same type, so the same method (c.m2) can give us that measure for every

object in the array

 11

Java Packages

● real programs usually include multiple classes in multiple files
● suppose you create a class HelloWorld
● your co-worker creates a different class HelloWorld
● by the end of the development process, you’d like your two programs to work together
● you could always rename one of the two packages, but sometimes that’s not so easy:

– one or both might be in a standard library that you can’t change
– changing either one might require changing lots of other code

● so instead, Java allows you to declare that your class is in a package:
package edu.hawaii.esb.example;

– the package declaration should come first in a file, and there can only be one per file
– Java package names should be unique!

● we’ve seen many packages before, including java.lang and java.util
● source code in the same package is generally found in the same folder (same directory)

 12

Using classes defined in
Java Packages

● you have seen this before: java.util.ArrayList<String>
– anything in java.lang (such as java.lang.String). is automatically imported
– in the example on the preceding slide, use edu.hawaii.esb.example.HelloWorld

● to make the code more readable, you can import packages:

import java.util.*;

ArrayList<String>

● you can import any number of packages
– generally the import statements are all at the top of the source file

● right after the package declaration (if any)

● too few import declarations make the code very precise, but much longer
● too many import declarations make the code hard to understand for

anyone who is not familiar with all the packages

 13

Java Packages: more information

● this material is not in the book. A few
references:
– the wikipedia page Java package
– the Java tutorials
– this guide provides many details of package

declaration and usage, including access to
protected methods and variables by code in the
same class

– and many more!

https://en.wikipedia.org/wiki/Java_package
https://docs.oracle.com/javase/tutorial/java/concepts/package.html
https://www.javaguides.net/2018/09/packages-in-java-with-examples.html

 14

Summary

● we can do a lot of Java programming without knowing
much about memory

● but we do have to understand what it means when two
object references refer to the same object

● reviewed .equals and .compareTo
● brief introduction to type comparisons and

parametrized types
● interfaces specify what public methods a class provides

– interface names can be used instead of class names
in type declarations

● Java packages allow us to structure our programs in
different files and folders/directories
– and to uniquely identify even classes with the same

name

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

