ICS 111
Overriding, Polymorphism

overloading methods
overriding methods

object polymorphism

* abstract methods, abstract classes

* final methods, final classes

example from textbook: bank accounts

Method Overloading

 We have already seen cases where methods with the same name are called on
different parameters:

- System.out.printin() and System.out.printIn(String s)
- constructors with different parameter types
* In each case, these are different methods that just happen to have the same name

* This is called overloading

- for example, System.out.println is an overloaded method
- constructors can be overloaded

* Overloading is fine under two conditions:

- it doesn’t cause confusion to callers of the methods
* i.e. the methods should do “the same thing”, even though on different parameters
- it is done on purpose, rather than accidentally
* accidental overloading can happen when overriding methods - discussed on the next slide

Method Overriding

when a subclass extends a superclass, it inherits its public+protected methods

sometimes in the subclass we want to modify what one of the superclass methods does:

- suppose | create a MyAL class which extends ArrayList

- | want to modify the single-parameter add method to add at the beginning of the array list, rather
than at the end

| can do this by re-declaring the same method in the subclass, with the same
parameters, and re-implementing it

the method in the subclass may use super to call the method in the superclass

- example for MyAL:
public void add (Value v) {
super.add (0, v);

accidental overloading happens when we intend to override, but use a different set of
parameter types

Overriding and overloading:
remembering the difference

* Overriding is when a subclass
re-implements the method of a
superclass

- the new method overrides (takes
over from) the corresponding
method in the superclass

* Overloading is when the same
name refers to different
methods

- the name is overloaded because,
instead of referring to a single
method, it refers to several
different methods

» the same name has to “carry”
ultiple methods - it is overloaded

What method gets called?

Suppose we have a method that takes as parameter an Object and prints it:

public static void printObject (Object x) {
String s = x.toString();
System.out.printf ("$s\n", s);

}
if | have a variable of type ArrayList<String> al = ...

and given that ArrayList overrides the toString() method of its superclass

calling printObject(al) calls which toString method?

- Object.toString(), or
- ArrayList.toString()

calling the method in ArrayList is more useful

and this is what Java does:

- method calls are determined dynamically by the actual underlying object, not by the type
declaration

Polymorphism

* in Greek, “poly” refers to many, and “morph-" refers to form, shape, or type

* in computer science, polymorphism refers to a single variable possibly having values
of different types

 we have seen polymorphism in the example on the previous slide: the parameter is
Object, the actual value is of type ArrayList<String>

within the method that has a parameter of type Object, we can only use methods of
the Object class

- but as we have seen, the method that is actually called is the most specific possible method,
determined dynamically

* SO:
1. only the methods of the declared type can be used
2. of these methods, the one from the actual object is the one that is used

this is important for writing correct programs!
fortunately, it is also rather intuitive

things to be careful about

* remember to use super when calling methods from
the superclass

- this and super help resolve name clashes

 Use accessor and mutator methods to access the
private variables in the superclass

e constructor calls to this () or super () must be the
first statement in the body of a constructor

 this refers to the actual object, not the declared
object type

- this.toString () calls the toString() method of the
subclass, not of the superclass, nor Object.toString()

abstract classes and methods

sometimes a class is designed to be subclassed
» the designer of the superclass may want to require the subclass to provide a specific method
 this method is called abstract in the superclass

- and does not have an implementation in the superclass

public abstract String concatenate(String s);
* any class with one or more abstract methods is an abstract class
- and must be declared with the keyword abstract

public abstract class StringOperations {
» abstract classes have no constructors
* we cannot create an object of an abstract class
* but we can have variable and parameter types be abstract classes

public class Example extends StringOperations { .. }

StringOperations sl = new Example() ;

* summary: an abstract class forces implementers of subclasses to implement all the methods that are
abstract in the superclass

implementers of subclasses still inherit any non-abstract methods from the superclass

final classes and methods

« we have seen that variables declared with £final are
constants

* the final keyword is used in a similar sense in class
declarations to mean that a class cannot be subclassed

public final class String { .. }

 final can also be used in a method declaration, to mean
that the method cannot be overridden:

public final void doNotOverrideThis (int x) { ..

» abstract classes are common in the Java standard library,
final classes are not as common

Worked-out example:
Bank Account class

 from textbook Section 9.4, How-To 9.1

* design and implement a class hierarchy to represent different
types of bank account

 at the root of the hierarchy is a BankAccount object that can
represent any account

- it keeps the balance in an instance variable
- it has a getBalance() accessor method
- it has mutator methods for deposits and withdrawals

- it has a method to do end-of-month processing

* which doesn’t do anything
* but may be overridden by subclasses

orked-out example: subclasses

» each subclass of BankAccount, e.g SavingsAccount and CheckingAccount,
provides the deposit, withdrawal, getBalance, and monthEnd methods

- only overriding whatever methods it needs to override
- we could easily have an account type that does not override any methods

» the SavingsAccount overrides the monthEnd method to deposit interest into
the bank account once a month:

double interest;
public void monthEnd() {

super .deposit (interest * super.getBalance());

}

the book handles a few more cases, specifically computing the interest on the
minimum rather than the final balance

* in this example, both uses of super are optional, since SavingsAccount does
not override getBalance and deposit

Review: Objects and Classes

classes define the type of object values

the implementation of a class includes all the class variables (including
the instance variables) and the class methods and their code

classes are grouped hierarchically so that every class (except Object)
extends another class

- a value of a subclass type can always be used where a value of the superclass
type is needed

- but not the other way around, e.g. you cannot use an Object where a String is
needed

extending a class gives us all of that class’s methods

- with the option of overriding some of those methods
- and of course the option of declaring our own methods and variables

Summary

* we are starting to see that programming
with objects is more than just getting our
code to work: it is also about
representing our data in clear and useful
ways

* once we have created data
representations useful for the task at
hand, the actual code can be relatively
simple

» coding includes the coding of methods
inside a class, and the coding of method
that create and use objects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

