
 1

ICS 111
Inheritance, Object References

● Inheritance and subclasses
● Object references
● Static variables and methods

 2

Inheritance and Subclassing

● Review: we have seen that all exceptions are java.lang.Exception objects
– including java.lang.RuntimeException

● this means that either of these will catch a RuntimeException:

catch (java.lang.Exception e)

catch (java.lang.RuntimeException e)

● but the second one will not catch exceptions that are not RuntimeExceptions
● that is because RuntimeException is implemented by extending Exception:

public class RuntimeException extends Exception {

● the keyword extends means that RuntimeException, even if it doesn’t implement any public methods of its
own, provides all the public methods of Exception
– for example, RuntimeException has the printStackTrace() methods of Exception
– in turn, Exception inherits those methods from Throwable

● we say that RuntimeException is a subclass of Exception:
– all objects of type RuntimeException are also objects of type Exception, but
– there are objects of type Exception that are not objects of type RuntimeException

● in this example, Exception is the superclass
● in Java, a class can only extend one superclass: Java has single inheritance

 3

Object Hierarchies and
Implementation

● every object in Java is a subclass of Object
– and therefore has methods equals and toString (and a few others)
– if there is no extends clause in a class header, the class automatically extends Object

● an object of class X which extends Y stores the values of all the instance
variables of both X and Y and of any of their superclasses
– and provides all the public methods of all of these classes

● instance methods of the subclass have access to protected instance
variables and methods of all of their superclasses:
– methods of Y can only access the instance variables declared in Y
– methods of X can access all the instance variables declared in X, plus any public or

protected instance variables declared in Y
● and the same for methods

– a protected method in Y is protected also in X

 4

Object References

● Review: we have seen that multiple variables may refer to the same underlying
object

● for example:
ArrayList<String> a = new ArrayList<>();

ArrayList<String> b = a;

● Now we know more about objects, so we can understand what this really means:
a.add(new String("hello world");

if (b.get(b.size() - 1).equals("hello world")) { ...

since b refers to the same object as a, the condition will always be true – the
string "hello world" is added to both a and b by just calling a.add(), since there is
only one underlying object

● similarly for arrays, and any other object that is mutable
– that is, any object that has contents that can be changed

 5

Special Object References

● null is the object reference that doesn’t reference any object (!!)
● this refers to the object that this method was called on

– this is only available in instance methods and in constructors
● super refers to the the same object as this, but of the parent superclass

– super.method() is how we call instance methods defined in the superclass
● this.instanceVariable is a clear and common way of referring to an instance

variable for this object
– super.instanceVariable is also clear, but much less common

● this is usually not required, but often improves the clarity of the code
– e.g. the parameters to a constructor can then have the same name as the instance variables:
this.somethingSpecial = somethingSpecial;

● this can also be used in calling instance methods:

if (this.hasName()) { ...

 6

this, super and constructors

● one constructor can call another constructor of the same class
– but only as the very first line of the calling constructor
– and instead of using the class name to call the constructor, it uses this

public class Window {

 boolean windowIsOpen;

 public Window(boolean isOpen) {

 this.windowIsOpen = isOpen;

 }

 public Window() {

 this(false);

 }

}

● similarly, super() or super(args) is used to call a constructor of the superclass
– it is often a good idea to have your constructor call a constructor of the superclass
– unless you want the default constructor of the superclass to be called instead

 7

Object Hierarchy Example

public class FaceMask {

 private String faceMaskColor;

 public FaceMask(String color) {

 faceMaskColor = color;

 }

 public string getColor() {

 return faceMaskColor;

 }

}

public class AdjustableFaceMask extends FaceMask {

 private int adjustment = 0;

 public AdjustableFaceMask(String color, int adjustment) {

 super(color); // call the constructor of the superclass

 this.adjustment = adjustment; // initialize our instance variable

 }

 public void adjust(int by) {

 adjustment += by;

 }

}

● now if I create an object of type AdjustableFaceMask, I can call its color() method:

 AdjustableFaceMask mask = new AdjustableFaceMask("blue", 0);

 String c = mask.getColor();

 8

static methods

● we have seen static methods, particularly main
● static methods are associated with the class, rather than

with specific objects (specific instances of the class)
● example: Math.cos() is a pure mathematical function

that computes its result based only on its parameters,
and doesn’t refer to any instance variables

● so it is declared as a static method
● in your code, you are welcome to make methods static

when appropriate:
– when the method doesn’t use instance variables

 9

static variables

● there are times when we want a global variable to be
shared across objects of a given class

● the book (section 8.11) has a good example: to give a
distinct identifier to each object in a class

● System.in and System.out are public static variables
– array.length is a public instance variable

● constants (such as Math.PI) are usually also declared
static

● static variables can be used by code in both instance
methods and static methods

 10

Implementation of Inheritance

● each call to new reserves memory for an object
● the memory must include space for:

– all the instance variables (private, protected, or public) declared in
this object

– all the instance variables declared in the superclass, and all the way
up the hierarchy

● the compiler controls access to variables and methods:
– public means accessible to all
– protected means accessible within the class and in all the

subclasses
– private means only accessible within the class

 11

Using Subclasses

● an object in a class X can be used wherever an object of
its superclass Y is needed
– e.g. in a parameter list, an assignment, or an expression
– for example, if a method takes as parameter a type FaceMask, I

can call that method with an object of type AdjustableFaceMask
● this is useful if we have true hierarchies, such as Vehicle

and Car – any method that takes a Vehicle as parameter
will operate on any car
– the reverse is not true – a method that takes a Car as

parameter will not operate on Vehicle objects

 12

Summary

● all objects are part of a hierarchy of classes
rooted at Object

● the keyword extends is used to declare that
this class is a subclass of another class

● in instance methods, this refers to the object
the instance method was called on, and super
to the same object but of the superclass type

● instance methods in the subclass can call
protected instance methods of the superclass

● and can access protected instance variables
of the superclass

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

