ICS 111
Inheritance, Object References

 Inheritance and subclasses
* Object references
e Static variables and methods

Inheritance and Subclassing

Review: we have seen that all exceptions are java.lang.Exception objects
- including java.lang.RuntimeException
* this means that either of these will catch a RuntimeException:
catch (java.lang.Exception e)
catch (java.lang.RuntimeException e)
* but the second one will not catch exceptions that are not RuntimeExceptions
» that is because RuntimeException is implemented by extending Exception:
public class RuntimeException extends Exception {

* the keyword extends means that RuntimeException, even if it doesn’t implement any public methods of its
own, provides all the public methods of Exception

- for example, RuntimeException has the printStackTrace() methods of Exception

- in turn, Exception inherits those methods from Throwable
* we say that RuntimeException is a subclass of Exception:

- all objects of type RuntimeException are also objects of type Exception, but

- there are objects of type Exception that are not objects of type RuntimeException
* in this example, Exception is the superclass
in Java, a class can only extend one superclass: Java has single inheritance

Object Hierarchies anad
Implementation

every object in Java is a subclass of Object
- and therefore has methods equals and tostring (and a few others)
- if there is no extends clause in a class header, the class automatically extends Object

* an object of class X which extends Y stores the values of all the instance
variables of both X and Y and of any of their superclasses

- and provides all the public methods of all of these classes

* instance methods of the subclass have access to protected instance
variables and methods of all of their superclasses:

- methods of Y can only access the instance variables declared in Y

- methods of X can access all the instance variables declared in X, plus any public or
protected instance variables declared in Y

 and the same for methods
- a protected method in Y is protected also in X

Object References

Review: we have seen that multiple variables may refer to the same underlying
object
» for example:
ArrayList<String> a = new ArrayList<>();
ArrayList<String> b = a;
« Now we know more about objects, so we can understand what this really means:
a.add (new String("hello world");
if (b.get(b.size() - 1).equals("hello world")) { ...

since b refers to the same object as a, the condition will always be true - the
string "hello world" is added to both a and b by just calling a.add(), since there is
only one underlying object

« similarly for arrays, and any other object that is mutable
- that is, any object that has contents that can be changed

Special Object References

null is the object reference that doesn’t reference any object (!!)

* this refers to the object that this method was called on
- this is only available in instance methods and in constructors

» super refers to the the same object as this, but of the parent superclass
- super.method () is how we call instance methods defined in the superclass

* this.instanceVariable is a clear and common way of referring to an instance
variable for this object

- super.instanceVariable is also clear, but much less common
* this is usually not required, but often improves the clarity of the code

- e.g. the parameters to a constructor can then have the same name as the instance variables:

this.somethingSpecial = somethingSpecial;
* this can also be used in calling instance methods:
if (this.hasName()) { ...

this, super and constructors

* one constructor can call another constructor of the same class
- but only as the very first line of the calling constructor
- and instead of using the class name to call the constructor, it uses this
public class Window {
boolean windowIsOpen;
public Window (boolean isOpen) {
this.windowIsOpen = isOpen;
t
public Window () {
this (false);

}
* similarly, super () or super (args) is used to call a constructor of the superclass
- it is often a good idea to have your constructor call a constructor of the superclass
- unless you want the default constructor of the superclass to be called instead

Object Hierarchy Example

public class FaceMask {

private String faceMaskColor;

public FaceMask (String color) {
faceMaskColor = color;

}

public string getColor () A

return faceMaskColor;

}
public class AdjustableFaceMask extends FaceMask {
private int adjustment = O0;
public AdjustableFaceMask (String color, int adjustment) {
super (color) ; // call the constructor of the superclass
this.adjustment = adjustment; // initialize our instance variable
}
public void adjust (int by) {
adjustment += by;

}
* now if | create an object of type AdjustableFaceMask, | can call its color() method:
AdjustableFaceMask mask = new AdjustableFaceMask ("blue", 0);
String c = mask.getColor () ;

static methods

we have seen static methods, particularly main

e static methods are associated with the class, rather than
with specific objects (specific instances of the class)

« example: Math.cos () IS @ pure mathematical function
that computes its result based only on its parameters,
and doesn’t refer to any instance variables

e 5O it is declared as a static method

* In your code, you are welcome to make methods static
when appropriate:

- when the method doesn’t use instance variables

static variables

there are times when we want a global variable to be
shared across objects of a given class

* the book (section 8.11) has a good example: to give a
distinct identifier to each object in a class

 System.in and System.out are public static variables
- array.length IS a public instance variable

e constants (such as Math.P1I) are usually also declared
static

 static variables can be used by code in both instance
methods and static methods

Implementation of Inheritance

* each call to new reserves memory for an object

 the memory must include space for:

- all the instance variables (private, protected, or public) declared in
this object

- all the instance variables declared in the superclass, and all the way
up the hierarchy

« the compiler controls access to variables and methods:

- public means accessible to all

- protected means accessible within the class and in all the
subclasses

- private means only accessible within the class

Using Subclasses

* an object in a class X can be used wherever an object of
Its superclass Y is needed

- e.g. in a parameter list, an assignment, or an expression

- for example, if a method takes as parameter a type FaceMask, |
can call that method with an object of type AdjustableFaceMask

* this is useful if we have true hierarchies, such as Vehicle
and Car - any method that takes a Vehicle as parameter
will operate on any car

- the reverse is not true - a method that takes a Car as
parameter will not operate on Vehicle objects

Summary

* all objects are part of a hierarchy of classes
rooted at Object

* the keyword extends Is used to declare that
this class is a subclass of another class

* in instance methods, this refers to the object
the instance method was called on, and super
to the same object but of the superclass type

 Instance methods in the subclass can call
protected instance methods of the superclass

* and can access protected instance variables
of the superclass

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

