
 1

ICS 111
Final Review 2/2

● Classes
● Interfaces
● Objects
● References
● Methods and Parameters
● Inheritance
● Exceptions

 2

ICS 111 review:
Java Class types

● a class is the fundamental way of defining new types in Java
● a class typically includes instance variables and instance methods

– an instance method is called from the object:
String s = new String("hello world");

s.substring(0, 5); // returns "hello"

● classes often also provide static methods
– a static method is called from the class:
Math.log(1.0);

● classes occasionally have static variables
● abstract classes can have abstract methods that have no

implementation
● instanceof tells us whether it is safe to cast a class to one of its

sub(sub-)classes
Object o = new String("hello world");

if (o instanceof String) s = ((String)o).substring(6);

 3

ICS 111 review:
Java Interfaces

● an interface lists a collection of public method headers
● each method header includes:

– name
– return type
– parameter types

● all the methods in an interface are public
● a class may implement one or more interfaces

– the compiler checks that all the methods listed in the interface
are implemented in the class

● an interface can be used as the type of an object reference
– in which case the object reference only provides the methods of

the interface

 4

ICS 111 review:
Java Objects

● Object is the superclass of all other objects
– meaning it is the root of the inheritance tree
– and every Java object is an Object

● we have looked at instance methods toString, equals, and getClass
– in each case, the method used is the one defined by the actual object,

rather than by the class of the reference:
String s = new String("hello world");

Object o = s;

if (o.equals(s)) { // runs String.equals, not Object.equals

● other methods include:
– hashCode: compute a (preferably unique) integer for this object

● if o1.equals(o2), then o1.hashCode() == o2.hashCode() should also be true

– clone: make a copy of this object (protected method)
– wait, notify, notifyAll: used for thread synchronization

●

●

 5

ICS 111 review2:
Java References

● every Object variable or Object-valued
expression is a reference to the underlying object

● multiple references to the same underlying
object are aliases for that one object:

int x[] = new int[10];

int[] y = x;

x[3] = 55;

if (y[3] == 55) { … // true

● ultimately, a reference is a memory address
● special references: null, this, and super
●

 6

ICS 111 review:
Java Methods and Parameters

● a method header always has a return type, a method name, and a
parameter list

● when implementing a method, the header is followed by the method body
– in the body, the method parameters are local variables

● a method declaration can also be modified:
– static (if not static, it is an instance method)
– public, protected, private, (or default – package private)

● when calling (invoking) a method,

must provide a value for each

of the parameters
● for overloaded methods, Java selects

the one that matches the parameters

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

 7

ICS 111 review:
Inheritance

class A extends B { ...

means that A inherits all the (non-private) methods of B
● A can override any method inherited from B

– name, parameters and return type must match exactly
● Java has single inheritance: a class can only extend one other class

– but a class can implement any number of interfaces
● with single inheritance, all the classes can be arranged in a tree rooted at Object
● creating a superclass and several subclasses can be a way of having objects that are

different but similar
● An object of a subclass type can have a reference of a superclass type:

Object o = new String("hello world");

● converting the other way requires a cast, and may throw a ClassCastException

String s = (String)new Object();

Exception in thread "main" java.lang.ClassCastException: class
java.lang.Object cannot be cast to class java.lang.String

● interfaces have their own hierarchy

 8

ICS 111 review:
Exceptions

● superclass Exception has many subclasses, including RuntimeException
● throw new Exception("something wrong");

● methods that may throw exceptions must declare that with throws
(unless they only throw RuntimeException)

● code that throws an exception may be put between try and catch:

try {

 throw new StackOverflowError();

} catch (RuntimeError e) {

 System.out.println("caught exception " + e);

}

● can have one or more catch statements
– the first one to match the exception is the one executed

● may end with a finally block

 9

ICS 111 review:
The big view

● ultimately we are trying to use computers to solve problems
– calculate pi
– write an exciting new game
– keep track of addresses in a phone

● simple problems can be solved by simple programs
● complex problems require more complex programs

– to have a chance at being correct, such programs have to be well structured
– sometimes the focus is on the data (e.g. objects, classes)
– sometimes the focus is on the program (e.g. methods, libraries)
– most programs need attention to both

● methods, objects, class hierarchies, packages, and standard libraries are
all ways to organize code and make programs more understandable

● complexity is also lessened when scope is limited (e.g. local variables) and
access is limited (private/protected methods)

● programs are more understandable when we follow conventions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

