ICS 111
Final Review 2/2

» Classes

* |nterfaces
* Objects

* References

Methods and Parameters

Inheritance
Exceptions

ICS 111 review:
Java Class types

a class is the fundamental way of defining new types in Java

a class typically includes instance variables and instance methods
- an instance method is called from the object:

String s = new String("hello world");

s.substring (0, 5); // returns "hello"
» classes often also provide static methods
- a static method is called from the class:
Math.log (1.0);
» classes occasionally have static variables

e abstract classes can have abstract methods that have no
implementation

* instanceof tells us whether it is safe to cast a class to one of its
sub(sub-)classes

Object o = new String("hello world");

f (o i1nstanceof String) s = ((String)o) .substring(6);

ICS 111 review:
Java Interfaces

an interface lists a collection of public method headers

each method header includes:
- name

- return type

- parameter types

all the methods in an interface are public

a class may implement one or more interfaces

- the compiler checks that all the methods listed in the interface
are implemented in the class

an interface can be used as the type of an object reference

- in which case the object reference only provides the methods of
the interface

ICS 111 review:
Java Objects

* Object is the superclass of all other objects

- meaning it is the root of the inheritance tree
- and every Java object is an Object

 we have looked at instance methods toString, equals, and getClass

- in each case, the method used is the one defined by the actual object,
rather than by the class of the reference:
String s = new String("hello world");
Object o = s;
if (o.equals(s)) { // runs String.equals, not Object.equals
* other methods include:

- hashCode: compute a (preferably unique) integer for this object
* if ol.equals (02), then ol.hashCode () == o02.hashCode () should also be true
- clone: make a copy of this object (protected method)

- wait, notify, notifyAll: used for thread synchronization

ICS 111 review?:
Java References

every Object variable or Object-valued
expression is a reference to the underlying object

 multiple references to the same underlying
object are aliases for that one object:

int x[] = new 1int[10];

int[] v = x;

x[3] = 55;

if (y[3] == 55) { .. // true

ultimately, a reference is a memory address
special references: null, this, and super

ICS 111 review:
Java Methods and Parameters

a method header always has a return type, a method name, and a
parameter list

when implementing a method, the header is followed by the method body
- in the body, the method parameters are local variables
a method declaration can also be modified:

- static (if not static, it is an instance method)
- public, protected, private, (or default - package private)

when calling (invoking) a method,

must provide a value for each

of the parameters Access Levels
| Modifier |l:lass |Pa{:kage |5uhclass |Wnrld

» for overloaded methods, Java selects

|pu|::|lic |"r' |"r' |"r' |1|r
the one that matches the parameters protectedly iy Iy N
Ino moditier v ||y N N

|private |'~,' |N |M |N

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

ICS 111 review:
Inheritance

class A extends B {
means that A inherits all the (non-private) methods of B
« A can override any method inherited from B
- name, parameters and return type must match exactly
* Java has single inheritance: a class can only extend one other class
- but a class can implement any number of interfaces
« with single inheritance, all the classes can be arranged in a tree rooted at Object

» creating a superclass and several subclasses can be a way of having objects that are
different but similar

* An object of a subclass type can have a reference of a superclass type:
Object o = new String("hello world");

» converting the other way requires a cast, and may throw a ClassCastException
String s = (String)new Object ();

Exception in thread "main" java.lang.ClassCastException: class
Jjava.lang.Object cannot be cast to class java.lang.String

* interfaces have their own hierarchy

ICS 111 review:
Exceptions

superclass Exception has many subclasses, including RuntimeException
* throw new Exception ("something wrong");

 methods that may throw exceptions must declare that with throws
(unless they only throw RuntimeException)

» code that throws an exception may be put between try and catch:
try |
throw new StackOverflowError ();
} catch (RuntimeError e) {
System.out.println ("caught exception " + e);
h
* can have one or more catch statements
- the first one to match the exception is the one executed
may end with a finally block

ICS 111 review:
The big view

ultimately we are trying to use computers to solve problems

- calculate pi

- write an exciting new game

- keep track of addresses in a phone

* simple problems can be solved by simple programs

« complex problems require more complex programs

- to have a chance at being correct, such programs have to be well structured
- sometimes the focus is on the data (e.g. objects, classes)

- sometimes the focus is on the program (e.g. methods, libraries)

- most programs need attention to both

« methods, objects, class hierarchies, packages, and standard libraries are
all ways to organize code and make programs more understandable

complexity is also lessened when scope is limited (e.qg. local variables) and
access is limited (private/protected methods)

rograms are more understandable when we follow conventions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

