
What is
Computer Science?

(or the art of unassuming titles)

Henri Casanova
ICS Graduate Chair

(henric@hawaii.edu)

Motivation
I’ve been hosting ICS690 for 8 semesters,
and I still don’t know what CS is!
I don’t think I even have my own definition
of what it is

I could come up with one, perhaps
But likely not a good one anyway
And very biased by my research area
In fact, each professor in this department
and others would likely give a different
definition
I figure smart people have surely come up
with a good one, so why bother... I can
Google it if needed one day

Motivation
Not knowing what one’s own field is sort
of a problem....
Wikipedia: “the scientific and
mathematical approach to computation
and to the design of computing machines
and processes”

Sounds good enough, has a science,
mathematics, and engineering vibe
How did this kind of definition come about?

Turns out, many hard questions need to
be answered to understand what CS is

Beyond just giving a definition

Some Questions?
“What is the subject matter of CS?”

Algorithms, computers, programs, people,
everything?

“What kind of methods do computer
scientists use to do their investigations?”

Hot topic among the faculty: “we should
teach a methods course!” “I know nothing
about your methods and I don’t care about
them!”

“It is a science?”
“Anything which has to call itself a science,
isn't.” [Brooks, 1996]
Is the term just added for respectability?

Reading Group
The last two semesters, we started a small
reading group (Mike, Lisa) with the goal of
understanding “what is science?”

That’s right, not ambitious either...

We read books about the philosophy of
science

“What is scientific knowledge?”
(epistemology)
“What are scientific methods?”
“What are the limits of scientific knowledge?”
“How does science develop?”
etc.

Philosophy of Science

That branch of philosophy started early
1900s, starting with positivism
Positivism: knowledge comes from
experience, and scientific claims are
meaningful only if verified in experience
Sounds good, but: How do we verify?

e.g., “All matter consists of atoms”: are we
going to check the universe?
We need some leap of faith to declare “ok,
fine, this is a law that applies always”

Karl Popper
Scientific statements
should not be verified
(because they can’t be)
but instead falsifiable!
Statements have simply
to “prove their mettle”
until proven wrong, at
which point better
statements are sought
No absolute scientific
truth, only scientific truth
for now...

Thomas Kuhn
Science proceeds as:
“normal science” - crisis -
revolution - “normal
science” - crisis - revolution
- etc..
Normal science: all is well in
our theory of the world
Crisis: some experiment
proves that our theory
doesn’t always work!
Revolution: intense period
in which new theories are
proposed

So what?
We learned several things, and perhaps
changed our way of thinking about these
matters

I wrote my first “popperian” paper

As expected, those books don’t solve
everything and in fact it’s fair to say that
there is some disappointment
So now I understand a tiny bit better
what science is... but I still don’t know
what CS is

Some parts clearly are not science, and
some parts may be

Is CS Science?
“What is so special about scientific knowledge is that it
is derived from facts, rather than being based on
personal opinion” (Chalmers, 1999)
What are facts in computer science?

Computers are man-made, so are there timeless laws as
in physics?
The things that physicists study happen without scientists
Do the subject matters of CS exist without computer
scientists? I guess it depends....

What is new knowledge?
If in biology you observe something new about some
organism, you’ve added to the body of knowledge
If in CS, you observe something new about some system
that some grad student built, do we care? It depends....
Hence the difficulty of defining new research projects!

Is CS Mathematics?
Mathematics is not an (empirical) science
It’s about man-made objects/concepts
So is CS
Many would agree that CS is mathematics

Turing, Dijkstra, knuth, etc.

There is a strong mathematical tradition
in CS
But nowadays, it’s clear that mathematics
is no longer fundamental for many CS
activities

We’ll see how that has come about....

Is CS Engineering?
Engineering: about making things, not
about explaining the world

“The scientist builds in order to study, the
engineer studies in order to build” [Brooks,
1996]

Many CS researchers build systems and
test them, just like engineers. These
systems comprise man-made computers.
Strong opposition from the mathematical
tradition: “Computer science is no more
about computers than astronomy is about
telescopes” [Dijkstra, but in fact Fellows]

computer science ≠ computer engineering

So, which is it?
Clearly, CS is sort of like math, sort of like
science, sort of like engineering
This is why it seems so all-over-the-place to
outsiders

Look at our faculty
Nobody on campus can understand what we
do
It would be great to be able to tell them!

Is CS a loosely connected set of computing-
centered fields and just an umbrella (and
thus not useful) term to even have?
Or should we have a (good) definition?

Definitions
Too broad: “the study of phenomena
surrounding computers” [Newell, Perlis,
Simon, 1967]

It describes what Computer Scientists do, but
if computers are a product of CS, then it’s a
circular definition
Like “Mathematics is what mathematicians
do”

Too narrow: “Computer Science is the
study of the theory and practice of
programming” [Khalil, Levy, 1978]

Is CS merely programming????

We’ll look at other definitions

Should we care? (I)

Hamming believes it’s important not to
ignore this question (“What is CS?”) and
that it’s a bad idea to just “get on with
doing whatever it is we’re doing”

“The picture which people have of a subject
can significantly affect its subsequent
development. Therefore, although we
cannot hope to settle the question
definitively, we need frequently to examine
and to air our views on what our subject is
and should become” [Hamming, 1969]

Should we care? (II)
Studying what CS is highlights the diversity of the
field and the challenges that diversity brings with it
Heated arguments about how computer scientists
should work have roots in different conceptions about
what the field is
Many misunderstandings/controversies can be
avoided by knowing the philosophical traditions

“How can you be a computer scientist and not know
this????”

Very difficult to come up with common understanding
of how research should be done

e.g., my interactions with Prof. Suthers or Prof. Poisson

Are CS department just wildly different people who
happen to be on the same floor?

A small department showcases this very well :)

Some Philosophical
Questions

“Do computer scientists prove formulas like mathematicians,
build things like engineers, test hypotheses like scientists, do
all the above, or do something else entirely?”
“What is progress in CS?”

Look at list of Turing award recipients

“Are new algorithms or programs progress?”
“How does new knowledge about computing becomes a part
of commonly held knowledge about computing?”
“What kinds of things in CS are universal, objective,
timeless?”
“Are algorithms abstract or concrete? Is everything a
computer?”
etc.

Great to discuss over a beer, or in this seminar, but what
would people who study the philosophy of (computer)
science say?

Philosophy of CS
The Philosophy of CS is not well developed
I have no idea what it is
So I figured: great topic for the seminar
First thing to do: what have people done about this?
Answer: Matti Trede teaches a full semester course
on the philosophy of CS in Finland
So, as a first step (toward such a course? an ICS690
“module”?) I’ve read his lecture notes and material
and will shamelessly use this as a basis for my
rambling

Already have in the previous slides

You are thus guinea pigs of this horrible experiment
Feedback, participation MOST welcome here

Outline

History of the identity of the field
Funny / illuminating quotes abound

Discussion of the three CS traditions
math, science, engineering

Fundamental question

History of the
Discipline

CS has a short history
The question “what’s the first computer” has no clear answer

Leibniz, Pascal, Babbage, Ada Lovelace, Jacquard Loom, Zuse, ...

But what is the first “stable” part of CS as a field?
Likely: the stored program paradigm, the set of innovations
around that paradigm

The Church-Turing thesis (without this, some argue that there would
be no field of computing, just eclectic knowledge about particular
machines)

Turing Machine

Von-Neumann architecture
ENIAC: the first Turing complete machine (1946)

So, right after WWII
In 1958, in Communications of the ACM: “What is your reply
when someone asks your profession? Computing Engineer?
Numerical Analyst? Data Processing Specialist?”

asked for input on “What should we name this field?”

1940s - 1970s

In 1946, first society for computing professionals:
“Subcommitte on Large-SCale Computing” (part of
AIEE (Am. Inst. Electrical Eng.))
In 1947: Foundation of the ACM
In 1951, the IRE (Inst. Radio Eng.) formed
“Professional Group on Electronic Computers”
In 1963: AIEE and IRE merged, becoming IEEE and
creating the “IEEE Computer Society”
IEEE: Standards and hardware
ACM: Theoretical computer science and applications
Or at least that was the idea
It’s not clear if in those years members of ACM/IEEE
thought of themselves as “Computer Scientists”

1940s - 1970s
In the 1950s, Communications of the ACM suggested names for
people in the field

turingineer, turologist, flow-charts-man, applied meta-mathematician,
applied epistomologist, comptologist, hypologist, computologist (this
last one had quite a bit of support)

By the turn of 1960, hot debate about the name of the field
likely meaning that it had really become a field

By the late 1960s, the name “Computer Science” had been
accepted

1962: first CS department (Purdue Univ.)

Knuth, 1985: “I suppose the name of our discipline isn't of vital
importance, since we will go on doing what we are doing no
matter what it is called; after all, other disciplines like
Mathematics and Chemistry are no longer related very strongly to
the etymology of their names.”
Dijkstra didn’t like it: “It’s like calling surgery Knife Science”
But it still wasn’t clear to people what the field was, even though
it had been named
In 1967, we have a first “official” definition...

One Definition
Allen Newell, Alan Perlis, Herbert Simon, Science, 1967:
“Wherever there are phenomena, there can be a science to
describe and explain those phenomena. Thus, the simplest
(and correct) answer to ‘What is botany?’ is ‘Botany is the
study of plants’. And zoology is the study of animals,
astronomy the study of stars, and so on. Phenomena breed
sciences. There are
computers. Ergo, computer science is the study of
computers. The phenomena surrounding computers are
varied, complex, rich. [...] Computer science is the study of
the phenomena surrounding computers.”
This definition leads toward empiricism

observe, theorize, invalidate, repeat
implement two algorithms, compare them, draw
conclusions
send packets through the internet, compute node
degree, observe power laws, draw conclusions

Is it useful?
The authors of this definition argued that the study
of computer “does not lead to user sciences” but
instead “to the further study of computers”

The computer is not “just an instrument” but a
“phenomenon”

Begs the question: is this field useful to outsiders?
Many objections for this definition

“the phenomena surrounding computers” is way too
broad
is it a good idea to focus on the computer?

What “computer” means will change

And what about algorithms, programs, users

And aren’t computers only instruments?
See Dijkstra’s point of view

Forsythe’s Definition
George Forsythe: “I consider computer science, in
general, to be the art and science of representing and
processing information and, in particular, processing
information with the logical engines called automatic
digital computers.”
This definition focuses on computing, not computers
Note the terms “art” (meaning “craft”) and “science”
Knuth: “Science is knowledge which we understand so
well that we can teach it to a computer; and if we don’t
fully understand something, it’s an art to deal with it”
Is CS a craft or a science?

Is programming a craft or a science?
If it’s a craft, then is it even part of CS? (if CS is
supposed to be a science)

But Forsythe’s definition tries to cater both to the
pragmatic and abstract side of CS

Theory vs. Practice
At the turn on the 1970s there were two camps

theoretical CS: computational complexity, logic, etc.
practical CS: computer architecture, programming, etc.

In 1962, the ACM started making curricular recommendations
and the first draft was 1965
In 1967, the ACM said: “The subject areas of computer science
are grouped into three major divisions: information structures
and processes, information processing systems, and
methodologies”.
In 1968, the curricular guidelines include “...these
recommendations are not directed to the training of computer
operators, coders, and other service personnels.”
Follows strictly the mathematical tradition, and therefore:

Programming itself is not part of CS
Programmers are not computer scientists (but computer scientists
often program)

In fact, I get this question a lot from “laypersons”!

In 1974 the NSF recognizes CS as its own discipline

Informatics????
In 1970, the International Federation for Information
Processing (IFIP) coined Informatics: “the science of
the systematic and effective treatment (especially
by automatic machines) of information seen as a
medium for human knowledge and for
communication in the technical, economic, and
social fields.
CACM, 1998: “In fact there is no clear agreement
even on the name of the field. In European
universities, the titles of many of the relevant
departments revolve around the word ‘informatics’,
whereas in the US most departments are ‘computer
sciences’. To avoid using the name of the machine,
some use the word ‘computing’ instead”
Dijkstra preferred “computing science”...

Quid of Programming?
1972, CACM, Dijkstra wrote: “We must not
forget that it is not our business to make
programs; it is our business to design
classes of computation that will display a
desired behavior”
Instead of proving program correctness once
it is written, Dijkstra felt that one should
build correct programs from the ground up
(“mathematical proof by construction”)

This point of view never gained much support
outside of academia

But there is nevertheless a strong
mathematical tradition in CS

Go Mathematics!
In the 1970s, many Computer Scientists felt that to
legitimize the field , it would have to be recognized in
the mathematical community
Donald Knuth, 1974, American Mathematical Monthly:
“Like mathematics, computer science will be somewhat
different from the other sciences, in that it deals with
man-made [sic] laws which can be proved, instead of
natural laws which are never known with certainty. [...]
The difference [between mathematics and computer
science] is in the subject matter and approach —
mathematics dealing with more or less with theorems,
infinite processes, static relationships and computer
science dealing more or less with algorithms, finitary
constructions, dynamic relationships.”
Dijktra wrote a similar article but talked about how
what’s taught in mathematics is actually detrimental to
the development of good computer scientists

Go Mathematics?
Dijkstra’s view on Math vs. CS

Standard collection of concepts vs. concept-creating
skills
Learning standard notations vs. inventing ad-hoc
notations
“In the standard mathematical curriculum, the
student often only sees problems so ‘small’ that
they are dealt with at a single semantic level. As a
result many students see mathematics rather as the
art of organizing symbols than as an art of
organizing their thoughts”

Central theme: concept creation and abstraction
creation is fundamental in CS and the standard
undergraduate math curriculum may not provide
any of that training

CS = Mastering
Complexity

Minsky, 1979: “In many ways, the modern theory of
computation is the long awaited science of the relations
between parts and wholes; that is, of the ways in which local
properties of things and processes interact to create global
structures and behaviors.”
Minsky, 1979: “Like mathematics, [computer science] forces
itself on other areas, yet it has a life of its own. In my view,
computer science is an almost entirely new subject, which may
grow as large as physics and mathematics combined.”
Djikstra: As a consequence of the hierarchical nature of
computer systems, programmers gain agility with which they
“switch back and forth” between “various semantics levels”,
“between local and global considerations”, and between
“microscopic and macroscopic concerns”. He regarded this as
an extraordinary ability among scientists.
Djikstra, 1987: “The ratio between an hour (for a while
computation) and several hundred nanoseconds (for an
individual instruction) is 1010, a ratio that nowhere else has to
be bridged by a single science, discipline, or technology.”

CS is its own thing

Dijkstra, 1997: “Another thing we can
learn from the past is the failure of
characterizations like ‘CS is really
nothing but X’, where X is your favorite
discipline, such as numerical analysis,
electrical engineering, automata theory,
queuing theory, lambda calculus,
discrete mathematics, etc.”

Theory/Practice War
Against the lofty aspirations of Dijkstra and
Knuth, the business world claimed that academic
computer science had detached from the needs
of the real world

1972, CACM: “Industry gets graduates from
computer science departments with a bag full of the
latest technical jargon but no depth of
understanding the real computer systems and no
concepts of the problems they will be asked to solve
1975, Educom: “A formal education in computer
science is not an adequate background for those
who must design and install large-scale computer
systems

Punchline: CS at the time was accused of not
being able to answer the “software crisis”

“Software
Engineering”

Term introduced in 1968 at a conference held to
discuss the software crisis
Introduced as a “practical subject”

Concerned with building systems, and in this sense
definitely “engineering”
Software engineer should be a jack-of-all-trades

Radically opposed to Dijkstra’s view
He called software engineering “The Doomed
Discipline” and defined it as “how to program if you
cannot”
If your goal is to make CS accepted as a noble science,
you can’t accept that part of it is “just” engineering

But, right before the 1980s, software engineering
had become established as part of CS

Yet Another Definition

1978, ACM SIGCSE: “Computer Science is
the study of the theory and practice of
programming computers. This differs
from the most widely used definition by
emphasizing programming as the central
notion and algorithms as the main
theoretical notion supporting
programming”
Message: Programming is central, and
the theory is useful only as far as it
supports programming

’68 vs. ’78 ACM
curriculum

1968
information structures and processes
information processing systems
methodologies

1978
programming topics
software organization
hardware organization
data structures and file processing

No “theory” in the 1978 curriculum!!!!
The 1978 curriculum also emphasized “hands-on” work
in its description

In 10 years, theory ➩ programming and applications
Answer to the “software crisis” provided

Some Backlash
The ’78 report was highly criticized for lacking
mathematics/theory and implying “computer
science = programming”
’68 document: “an academic program in CS must
be well based in mathematics since CS draws so
heavily upon mathematical ideas and methods”
’78 document: “no mathematical background
beyond the ability to perform simple algebraic
manipulation is a prerequisite.... mathematics is not
required as a prereq for any hat the core
curriculum”
The following was added to the ACM ’78 document:
“An understanding of and the capability to use a
number of mathematical concepts and techniques
are vitally important for computer scientists.”

The 70’s and 80’s

Expansion of scope and interdisciplinarity
Computers are no longer just calculators,
but can partake in society

Didn’t make the discipline easier to
define :)
We’re seeing the effects of that
development today...
1979, Minsky: “CS has such intimate
relations with so many other subjects
that it is hard to see it as a thing in itself”

Denning’s Definition

In 1985, in American Scientist, Peter
Denning defined computation science as:
“The body of knowledge dealing with the
design, analysis, implementation,
efficiency, and application of processes
that transform information”

I happen to really like this definition, and
so did the ACM...

Recent Considerations
1989, ACM/IEEE task force comes up with Definition:
“[CS is] the systematic study of algorithmic processes
that describe and transform information: their theory,
analysis, design, efficiency, implementation, and
application. The fundamental question underlying all of
computing is, “What can be (efficiently) automated?”
Identifies 3 major traditions in CS

Theory: mathematics
Abstraction (modeling): natural sciences
Design: Engineering

The report states that debating whether one above is
more important than the others is likely counter-
productive. They are so intricately intertwined that it is
irrational to say that one is fundamental
Brooks around 1996 addresses this...

Brooks’ 4 unhappy trends in
CS

(1) Accepting a pecking order that theory
is more respectable than practice
(2) regarding the invention and
publication of endless varieties of
computers, algorithms and languages as
the end
(3) forgetting the users and their real
problems (academic ivory tower)
(4) directing young and brilliant minds
towards theoretical subjects at the
expense of more applied subjects

CS and Cars
Kugel, 1988: “Lots of people drive cars but that
does not justify an ‘automotive science’. Do
computers justify a computer science?”

Smith, 1998: “Computers turn out in the end to be
rather like cars: objects of inestimable social and
political and economic and personal importance,
but not the focus of enduring scientific or
intellectual inquiry.”

Dijkstra would answer that the computer is to the
computer scientist what the telescope is to the
astronomer (and yet, we don’t have “telescope
science”)

Outline

History of the identity of the field
Funny / illuminating quotes abound

Discussion of the three CS traditions
math, science, engineering

Fundamental question

The 3 traditions

This has been a rocky history
theory vs. practice, computer vs.
computing

It seems that accepting CS as 3 traditions
is the key to inner peace

mathematics, engineering, natural science

Some areas make research contributions
across traditions, some don’t
Let’s looks at some arguments
for/against each tradition

Is CS Mathematics?
Most radical positive view: Reductionism (a
discipline can be fully explained by another)

Reductionist’s view of chemistry: it’s only physics
Reductionist’s view of psychology: it’s only biology
Reductionist’s view of CS: it’s only mathematics!

Many of the early heroes of CS were
mathematicians
Most impressive theoretical advancements in CS
are always always proven and formulated in the
language of mathematics
So there is a math basis, but a full reduction to
math???
Typical argument: programming is not math

And yes, we say that programming is part of CS

Is Programming Math?
Hoare, 1969
1. Computers are mathematical machines. Every aspect of

their behavior can be defined with mathematical precision,
and every detail can be deduced from this definition with
mathematical certainty by the laws of pure logic.

2. Computer programs are mathematical expressions. They
describe with unprecedented precision and in every
minutest detail the behavior, intended or unintended, of
the computer on which they are executed.

3. A programming language is a mathematical theory. It
includes concepts, notations, definitions, axioms and
theorems, which help a programmer to develop a program
which meets its specification, and to prove that it does so.

4. Programming is a mathematical activity. Like other
branches of applied mathematics and engineering, its
successful practice requires determined and meticulous
application of traditional methods of mathematical
understanding and proof.

Is Programming Math?
Hoare “complained” that because computers and
programs are not typically constructed with
mathematical rigor, we’re forced to use
experimentation

But we should aspire for more!

Dijkstra’s view is
similar: CS is the
study of certain
mathematical
expressions:
algorithms
Formal derivation
from specification
to algorithm by a
sequence of
mathematical
transformations
Radically opposed
to “playing around
until it seems to
work”

Formal Verification
Formal verification of programs: going from
program to specification

Generates proofs that programs are correct
Reversed Dijkstra/Hoare

Today, formal methods are widely studied, but
we’re all aware of the limitations
In the 60’s/70’s, that seemed to be the way of
the future for many

The debate between the “it’s math” and the
“it’s not math” camp was centered around
formal verification (i.e., are programs
expressions to be proven?)

Objection #1: Proofs
Proofs in CS ≠ Proofs in Math

De Millo et al., 1976: “no mathematicians grasps a proof,
sits back, and sighs happily at the knowledge that the
theorem is true”

they run out of the office, show the proof to excited colleagues,
and then maybe publish after modifications/fixes

De Millo et al., 1976: “The verification of even a puny
program can run into dozens of pages, and there's not a
light moment or a spark of wit on any of those pages.
Nobody is going to run into a friend's office with a
program verification. Nobody is going to sketch a
verification out on a paper napkin. Nobody is going to
buttonhole a colleague into listening to a verification.
Nobody is ever going to read it. One can feel one's eyes
glaze over at the very thought.”

Granted, but it’s not because it’s tedious and
automatically generated that it’s necessary worthless

Objection #2: Real
World

Fetzer, a philosopher, in 1998 states that a program cannot
be proven correct because it operates in a concrete world

Criticism of Hoare’s statement (1969): “When the correctness of
a program, its compiler, and the hardware of the computer have
all been established with mathematical certainty, it will be
possible to place great reliance on the results of the program,
and predict their properties with a confidence limited only by the
reliability of electronics.”

Fetzer distinguishes: programs-as-text (algorithms) and
programs-as-causes (executable)
He argues that mathematical certainty is not possible for the
latter due to external events

We can prove algorithms corrects, but not programs

This is a philosophical argument and for instance when
we write a research paper we make tons of implicit
assumptions that the real world behaves “ok” (e.g., no
cosmic rays)
Received a HUGE response, or rather backlash

Objection #2: Real
World

In 1989, CACM article co-authored by 10 well-known
computer scientists, stating that Fetzer’s position was “ill-
informed, irresponsible, and dangerous”
Fetzer’s answer: “In its inexcusable intolerance and
insufferable self-righteousness, [their] letter exemplifies
the attitudes and behavior expected from religious
zealots and ideological fanatics, whose degrees of
conviction invariably exceeds the strength of their
evidence.”
Answers/Responses went on for a while

To the point that Fetzer wrote the “story” of all this

Many failed to see the difference between program-as-
text and program-as-causes
Bu as long as one recognizes this difference, one still has
a strong argument for formal methods for the former

Especially if CS is not about executing program, but about
studying computation

Objection #3: Users
Hoare, 1969: “The most important property of a program is
whether it accomplishes the intentions of its user. If these
intentions can be described rigorously by making assertions
about the values of variables at the end (or at intermediate
points) of the execution of the program, then the techniques
described in this paper may be used to prove the correctness
of the program.”
Only sensible if program computes formal functions
Proving a program correct does not mean that the program
does what the user wants it to do
Today, proponents of formal methods (i.e., mathematical
basis for CS) still see value in empirical methods

Formal methods do not make testing unnecessary
But using them can lead to much better designs

Bowen et al., 2005: “The software engineering
community is not willing to abandon formal methods
[...] but neither is it willing to embrace them”

Is CS Engineering?
Many early CS pioneers were engineers

Some CS department are in engineering colleges
Some CS departments are combined with CE departments

If the goal of CS is to build useful things, then it is
engineering
Commonly drawn line: Computer engineers work with
physical things (hardware), and computer scientists
work with abstract things (algorithms)
But turns out it’s really hard to keep that line not
blurred
Engineering research: development of “tools” that will
enable classes of tasks to be accomplished more
efficiently

Sounds a lot like CS research

Many have argued that CS is “synthetic engineering”

is CS Engineering?
The engineer compare solutions and select solutions
in terms of costs and efficiency
Note that a lot of “theoretical” CS is just about this:
algorithm complexity is nothing but time/storage
cost!

Could it be that even theoretical CS is research???

Some may argue that the goal of these works is to
discover algorithm principles and properties of
computation

But many articles are couched as “their optimal
algorithm was O(nx) and ours is O(ny<x log n)”

And if CS is a huge field today with many
departments, an industry, etc. has a lot to do with
the fact that the ENIAC was built

Instead of remaining profound/amazing/incredible/etc.
but idle speculation by Turing/Church

Objections
Objections abound about “software engineering”
You can imagine what Hoare/Dijkstra/etc. would say

Main criticism: software engineering lacks rigor because
it’s “just” about building something that works

Holoway, 1995: software engineering is based on “a
combination of anecdotal evidence and human
authority”
Zelkowitz, 1997: about 1/3 of 600 surveyed software
engineering articles had no experimental validation
Question: can engineering contributed anything to
the common knowledge about computing? And if
not, should it be part of the academic discipline of
computing?

Not all important activities must be nominated as
academic disciplines

Objections

Consider a result like: Here is the first
polynomial algorithm to solve problem P.
Its complexity is 4060n12 + O(n11)
The engineer: no use whatsoever

We can never use it to build anything

The mathematician: huge result because
P is not NP-hard

We’ve learn something about computing

Is CS a Science?

This question has been debated a lot
CS is math, and so it’s not (natural)
science!
CS is engineering, and so it’s not science!

This is a very complex question
The term “science” is the subject of entire
books that try to explain what it is

D. Knuth: “unnatural science”

Human-made
Argument

Common objection: science is about understanding the
world around us, and CS deals with human
constructions

New CS results do not tell us anything new about the world,
only about how well previous computer scientists have
done their job!
A human had to think up problems to solve

In fact, it’s all about defining problems!

“In CS there is no history of critical experiments that decide
between the validity of various theories, as there are in
physical sciences” [Hartmanis, 1993]

I TOTALLY disagree with this (e.g., network models)

Advancements of natural sciences are often documented
by dramatic experiments, in CS they are often documented
by dramatic demonstrations [Hartmanis, 1993]
The sciences are focused on what exists, CS focuses on
what can exist [Hartmanis, 1993]

Human-made
Argument

Some argue that this is a red herring
Tichly 1998: “the only major difference
between traditional sciences and CS is just
that information is neither energy nor
matter”
What defines a science is not “what” is
being studied, but “how” it is studied

Empirical Argument
Ok, it’s not “natural” but it still has to be
“empirical”, so who cares?

But for the most “mathematical” part of it

We need this because of the gap between
models in CS (e.g., a program’s view of the
world) and the real world

Showing that the program does what it’s
supposed to be doing is just not enough
And often programs try to do things we don’t
even understand (e.g., AI stuff) (“we’re better
at building systems than at understanding
systems”)
So we cannot prove validity, we can just
experiment

Empirical CS Research
There is thus a strong need for empirical CS
Research

And of course, for all the cross-disciplinary fields
(e.g., HCI) as well

A problem is that we don’t do it well!
Think of the gap between CS courses and CS
research

There are many studies that compare CS
research to research in other fields, and show
that CS researchers experiment significantly less,
even though they should

But we can fix this!
Some of course say “but we’re not studying the
same things, so why should we use the same
methods?”

Empirical CS

So in the end, whether CS is a science or
not isn’t perhaps very interesting

But many CS research activities have to
rely on empirical scientific methods

Which is not always done well due to our
training (too much emphasis on the
mathematical and engineering aspects of
CS?)

Outline

History of the identity of the field
Funny / illuminating quotes abound

Discussion of the three CS traditions
math, science, engineering

Fundamental question

Fundamental Question

When’s somebody asks “What’s CS?”
It would be nice to have an answer
One option is to have them study the
philosophy of CS
But it would be nice to say “Well, the
fundamental question that the discipline
answers is....”

The Fundamental
Question

Forsythe, 1969: “The question ‘What can be
automated?’ is one of the most inspiring
philosophical and practical questions of
contemporary civilization”
Denning, 1989: “Fundamental question: ‘What
can be (efficiently) automated?’”

“Effective”: the steps of an algorithm must be exact
and each step must be executable in finite time
(Knuth, 1997)
“Efficient”: statement about the behavior of an
algorithm with different sized input (Knuth, 1997)

Considering human-centered computing (since
the 80‘s), the question should be “What should
be (efficiently) automated?”

What will help users? What’s ethical?

Theory vs. Practice
“What can be automated?”

This is a theoretician’s question
Church-Turing thesis divides processes into those that
can and those that cannot
Leads to other theoretical questions:

“Why can this class of processes be efficiently automated?”

“What kinds of properties are typical of processes that can
be efficiently automated?”

“How can process p be automated?”
This is a practitioner’s question, with many implied
considerations (cost, maintainability, etc.)
Leads to other practical questions:

“Which implementation automates p most efficiently?”

“What kinds of problems do certain implementations
automate best?”

Rewording

Taking into account both theory and
practice, and considering that computing
is human-centered, Matti Tedre rewrites
the fundamental question of the field as:
“How can one efficiently and reliably
automate processes that can be
automated and that should be
automated?”

Fundamental Question
Note that this fundamental question removes
the “scientific” aspect

Consider a paper that studies power-laws of
vertex degree in Internet topology
Consider a paper that studies failure rates in
servers and hard drives

Such works are not at all about computing
itself but they study human-made
(computing) systems the way a biologist
would study organisms
But not all CS works have to study the
fundamental question...

There is no way there will be one catch-all
question anyway

Conclusion

Conclusion

Conclusion

If anything, we’ve learned about
how the field developed
the perspective of “heroes” of olde
how the field if polymorphic and not “one”
thing

Hopefully, some of you will be motivated
to read further on this topic

If everybody was very knowledgeable in
the philosophy of CS, we’d be in a better
world

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

