

ICS 451: Course Review

● Network Programming
● Application Layer: HTTP, DNS, email

– client/server organization, data encodings

● Transport Layer: TCP, UDP
– connections, reliable transmission, adaptive

timers, flow and congestion control

● Network Layer: IP and routing
● Data Link Layer: Ethernet and 802.11, framing,

Medium Access Control and MAC addresses
● Principles of networking

Network Programming

● sockets, IP, addresses, ports, address families
– SOCK_STREAM and SOCK_DGRAM

● a stream has no message boundaries

– sockaddr, sockaddr_in, sockaddr_in6
● sockaddr * usually points to sockaddr_in/6

● in C, the OS doesn't know the length of your
buffer, so it must be given explicitly

content length <= buffer length
● content length specified on send/sendto
● content length returned by recv/recvfrom

● connect, or listen, bind, accept

networking concepts: layers

● each layer provides services to the layer above
– using the services of the layer below

● logically, each layer communicates with the
same layer on a different machine

– actually, each layer sends and receives using
the layer below

● except at the physical layer!

● layering simplifies protocol definition and
implementation

– layering almost requires multithreading

standard layers

● application layer
● (presentation layer)
● (session layer)
● transport layer
● network layer
● data link layer
● physical layer

Application Layer

● end-to-end communication
– usually requires TCP and DNS

● DNS too is in the application layer

● does everything not provided by lower layers
– often includes security and encoding of different

types of data

● headers are often human-readable
– e.g. http, email, ftp

HTTP

● client-server system over TCP
● DNS in URL also used to select virtual server
● header is in plain text

– all but first line have field: value

– request has METHOD request HTTP/version

– reply has HTTP/version code explanation

– header ends with emtpy line

● many different content types, including html

email

● complex system evolved over the years
– always uses TCP

– in addition, also has application-level
retransmissions every few hours

● servers and clients not clearly separate
– email agent on host may be independent of

email program used to write and read email

– webmail server is an email client

● text-based protocol

DNS

● client-server architecture over UDP (port 53)
– recursive queries: server returns answer

– iterative queries: server may return another
server

● binary encoding of packet
– length+content encoding of domain names

– pointers help compress packets

● essential for the modern internet
– including www and email

Transport Layer

● end-to-end (not hop-by-hop) service
● typically TCP or UDP
● UDP provides ports and datagrams
● TCP provides ports and reliable byte streams

TCP

● connection setup (3-way handshake)
– header bits: SYN, FIN, ACK, RST

● sequence and ack numbers
– ack number is seq+length of payload

● i.e. “next expected sequence number”

– retransmission after timeout

– out-of-order packets result in duplicate acks

– Nagle algorithm

● flow control window
● TCB

TCP congestion control

● congestion “window” on sender
● AIMD – additive increase, multiplicative

decrease
● adaptive timer

– Binary Exponential Backoff on timer expiration

● slow start
● limits on achievable performance

– at most, ¾ of the bottleneck bandwidth

Network Layer

● end-to-end
– over hop-by-hop data-link layer

● almost only IP: IPv4, IPv6
● main problem solved: how to get data across

various networks
● accomplished by having routing table:

– for each destination, interface and next hop

Internet Protocol

● best effort:
– packets can be lost, corrupted, duplicated,

reordered, etc.

● addresses interpreted with respect to netmask
– network part of the address is used in routing

– the entire address is used for final delivery

– network mask has initial “1” bits identifying
network part of the address

● Time To Live or Hop Limit limit packet lifetime
– both measure hops (usually) or seconds

IPv4 details

● 32-bit addresses and netmasks
● fragmentation supported in routers

– Don't Fragment (DF) bit set in TCP segments

– More Fragments (MF) bit set on all but the last
fragment

● hop-by-hop header checksum
– changes at each hop as TTL changes

● 8-bit protocol number, 16-bit packet length
● 20-byte basic header, may have options

IPv6 details

● 128-bit addresses and netmasks
● end-to-end fragmentation only
● no header checksum

– upper layers now required to use checksum

– lower layers normally use CRC

● 8-bit next header, 16-bit payload length
● extension headers may follow 40-byte header

IP routing overview

● automatic way of setting up routing tables
– uses interface IP addresses (configured)

– uses local broadcasts

● IGPs: find optimal routes
– for some idea of optimal, e.g. least hops

● EGP (BGP): find routes that satisfy policy
– among the best routes for policy, choose routes

that cross the fewest Autonomous Systems

IP IGPs

● RIP: distance vector
– with infinity of 16

– split horizon with poisoned reverse

– RIPv2 supports netmasks

● OSPF: link state
– flooding to deliver link state to all routers

– Dijkstra's shortest path algorithm to compute
routes

– areas allow partitioning of information

– backbone area must connect to all other areas

related protocols and systems

● ICMP
– ping: echo request and reply

– ICMP error messages

– traceroute: send with low (but increasing) TTL,
listen for ICMP error messages

● DHCP
● NAT
● Firewall

Data Link Layer

● Framing problem: how to tell where frame
starts and ends

– reserve special symbols for frame start/end

– if symbols can occur in the data, they must be
escaped by bit-stuffing or byte-stuffing

● Medium Access Control problem: how to tell
when a transmission will not collide with others

– Aloha: just send when ready, retransmit in case
of collision

– but peak performance for Aloha is low, ~18%

Ethernet

● Carrier Sense Multiple Access with Collision
Detection: CSMA/CD

– carrier sense: do not send if someone else is
sending

– collision detection: if a collision occurs,
everyone knows it and discards a packet

● limits the size of the network
● not needed in a full duplex network where both

sides send simultaneously on point-to-pint links

● high throughput (but not 100%), low latency
● requires cables

Ethernet systems

● hubs: forward each bit, or jamming signal
– broadcast only, low latency

● learning switches: forward each packet
– break up the collision domain

– only broadcast when needed

● learning switches with STP
– distributed root election using uniqueness of

MAC addresses

– shortest path to root is enabled, all else blocked

– allows redundant links

802.11/WiFi

● Carrier Detection Multiple Access with Collision
Avoidance: CDMA/CA

– carrier detection: send only if nobody else is

– collision avoidance: do not send if RTS or CTS
was heard

● ack required on wireless medium
● ad-hoc mode or infrastructure mode
● infrastructure mode based on Wireless Access

Points (WAPs)
– 802.11 supports exchanging packets with 802.3

some principles of networking

● what can go wrong, will go wrong sometimes
● good models (such as client/server) are useful
● layering
● can have reliability or real-time, not both
● window must be greater than bandwidth-delay

product, or throughput will be limited by window
● performance matters
● security is hard but not impossible

– security by obscurity only OK if really secure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

