
  

ICS 351: Today's plan

● HTML
● HTTP
● web scripting languages 



  

HTML

● HyperText Markup Language

● an in-line way of marking (hyper)text, similar in spirit to 
TeX/LaTeX, and inspiring the creation of XML

● part of the markings are about style and formatting: font, size, 
bold/italic, bullet lists, etc.

● some markings lead you to other pages or objects, e.g.

      <a href="http://www2.hawaii.edu/~esb/">home page</a>, or

      <img src="http://www2.hawaii.edu/~esb/pix/2009sils.jpg">

objects are identified by URLs (all URLs are also URIs)

● each URL has a protocol (scheme name, e.g. http), a host 
identifier (DNS name or IP address), an optional port number (:80 
if not specified), and the path given to the server 



  

typical HTTP interaction

● client is given a URL, splits it into domain name (port) and path

● client resolves domain name to IP address

● client opens a connection to the IP address (port 80, or the given 
port), server accepts connection (TCP 3-way handshake)

● client sends HTTP request

● server sends HTTP response

● after parsing response and finding embedded images or other 
content, client sends new HTTP requests on same TCP connection

● server replies to each request in sequence

● client matches each response to its request, renders the page

● after a time (typically 30s), the server closes the connection 



  

HTTP request header

● all HTTP is rendered using ASCII. This makes it easy to 
read, a little harder to parse

● for example, an HTTP request might look like this:

      GET /~esb/ HTTP/1.1

      Host: www2.ics.hawaii.edu

      Accept: */*

      Connection: close



  

HTTP response header

● a corresponding HTTP reply might look like this:

      HTTP/1.1 200 OK

      Date: Thu, 19 Nov 2009 05:18:56 GMT

      Server: Apache

      LastModified: Wed, 02 Sep 2009 03:17:30 GMT

      ETag: "19abf20954728fb5090680"

      AcceptRanges: bytes

      ContentLength: 8341

      Connection: close

      ContentType: text/html

      <html>

      ...



  

HTTP headers

● in each case, the first line describes the main request or result:

●     o in the request, the method can be GET, HEAD, POST, or a 
few others,

●     o the path is specified immediately after the request,

●     o the protocol version follows the path

●     o in the reply, the version comes first, followed by the result 
code, both as a number and as a string 

● the remaining lines of the header give more details, sometimes 
essential details (e.g. the content type and content length)

● each header ends with an empty line



  

web scripting languages

● web content described by HTML was originally static, 
corresponding to files on the server

● since the server is a program, it can generate content 
that is generated dynamically, e.g. put the user's name 
(or bank balance) within the web page

● however, this requires the server administrator to 
modify the code of the server, which is error-prone

● so instead, the server program can execute a server-
side script to generate new content to be served

● this script can be written in any language supported by 
the system on which the server is running



  

client-side scripts

● even with a server-side script, each change in the web 
page requires an HTTP request and reply, and requires 
that the page be rendered again

● and usually requires an explicit user action such as a 
mouse click

● to have more interactivity, many browsers have been 
designed to execute client-side scripts that can modify the 
displayed page and exchange data over the internet

● client-side scripts are usually in Java or Javascript



  

client-side scripts and security

● while client-side scripts do much to improve the 
appearance of pages, there can be concerns 
about security and reliability

● client-side scripts let servers execute code on a 
client – how does the client know what the code 
will do?  can the client trust the server?

● in an attempt to address these concerns, 
browsers limit what scripts are allowed to do

● not all browsers execute client-side scripts



  

server-side scripts and security

● bugs in a server-side script can be exploited by 
attackers

● server-side scripts that do not thoroughly check 
their input are vulnerable, e.g. to SQL injection 
attacks

http://xkcd.com/327/

● a server-side script lets the client execute code 
on the server

● the server controls what scripts are available, 
but not what the clients will do with the scripts


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

