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ABSTRACT 

Current popular schemes e.g. homomorphic cryptography are 

extensively deployed to preserve privacy in a limited level but 

without a formal privacy model, we can neither offer privacy 

guarantee nor quantify the privacy loss. In this paper, we raise a 

few privacy-related questions, one after another, with the e-Lock 

state changes in a smart home as an example. In a novel privacy 

framework we proposed, the questions are partially addressed with 

the utilization of a set of theoretical models e.g. hidden markov 

model, differential privacy and information flow with belief. Since 

our paper is still at its start phase, we plan to accomplish the 

framework and wish can inspire colleagues’ interests in this area.   

Categories and Subject Descriptors 

K.4.1 [Computer and Society]: Public Policy Issues – Privacy;  

General Terms 

Measurement, Documentation, Theory. 
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1. INTRODUCTION 
In smart homes, proliferation of sensors and actuators equipped 

with communication capability enable occupants to remotely 

access or control an array of automated home electronic devices by 

entering a single command or a PIN number [1]. A current trend is 

that smart home, with occupancies’ consent, could cooperate with 

third parties such as a home security monitoring company to get 

24/7 security protection service. However, the participatory 

sensing application could potentially reveal the true data of 

occupants - it is highly possible that they are misused without well-

designed privacy preservation. 

The privacy violation for smart home [2] - even for some simple 

appliance such as electronic locks (e-Lock) [3], - is a pressing 

challenge today and increasingly affects all occupancies given the 

fact that captured true data can be misused to infer personal 

activities. The insight is based on the observation that some 

intermittent activities such as e-Lock switched on/off could 

possibly infer personal absence/presence at the smart home.  

A power replay attack [3] is explored against most popular and 

commercially endorsed electronic lock. However, privacy 

preservation and privacy analyses (e.g. [4]) for e-Lock in context 

of smart home security monitoring system has not been presented. 

More importantly, it lacks a formal model of privacy analysis – 

privacy guarantee and quantitative evaluation are desirable. The 

pertinent privacy related questions should be addressed regarding 

time-series e-Lock state data: (1) How much privacy is lost and to 

what extend if all e-Lock states in smart home are open for access? 

(2) If perturbation methods which introduce uncertain noise to true 

personal data is deployed, could aggregator still queries leak 

privacy? (3) If the aggregator (e.g. server or the cloud of the 

security company) is not trusted, could we protect the privacy by 

access control scheme based on information flow?    

Our contributions: we supply a theoretical privacy framework to 

analyze the privacy leakage through accommodating fundamental 

functionality e.g. sharing / hiding, perturbation and access control 

for aggregated time-series e-Lock state dataset for smart home 

system stored in cloud of things. We not only carefully study 

potential privacy inference but also try to address corresponding 

concerns about privacy loss in case of true dataset, of distorted 

dataset and of dataset under information flow protection:  

(1) When the switching on/off operations of e-Locks are open to 

access, they are treated as the input and, in turn, could be modeled 

as real-valued correlated Gaussian random variable. Based on that, 

hidden Markov Chain model is provided to measure the 

occupancies’ absence in correlation with the e-Lock’s switching 

on/off operations  

(2) To offer privacy protection, perturbing noisy into real data is 

assumed. We then invoke differential privacy method to analyze 

significant distinguish for specific occupancies’ absence of the 

smart home.  

(3) Turning on/off operations of e-Locks are transmitted to the 

security companies’ server or even their cloud. They may be 

borrowed by third party for investigation in future. It is possible 

that aggregator is untrusted. An attempt to utilize hyberproperty 

information flow is taken to shield privacy. 

2. ARCHITECTURE OF E-LOCK IN 

SMART HOME 

 

Figure 1 – Overview of e-Lock [3] in Smart Home of Cloud Things  

Figure 1 demonstrates the overview of the e-Lock in context of 

smart home with the cloud-things services. E-Locks in a smart 

home includes three components – keypad, central processing unit 



and solenoid (actuator). If the credential inputted at keypad is 

valid, a signal is sent to solenoid to changes the e-Lock’s state 

from off to on. The application generates time-series categorical 

data which is aggregated to the server/cloud of the security 

company through secure communication channel. The admin or 

even authority staffs (e.g. policeman) may be able to query or even 

access the anonymized dataset from now on. 

3. PRIVACY LOSS AND THREAT MODEL 

3.1 Privacy Loss Scenario 
Privacy for residence occupancy: An e-Lock state change 𝐶𝑖 can 

let an adversary infer that the resident is presence or absence with 

the support of a temporal correlation of participatory sensing data.  

Example I: Alice is the only one at home and then e-Lock’s state is 

changed. Eve can probably infer that Alice may open the door and 

leave or Alice has accompany. If it is the former, Eve can take the 

risk to break in. 

Untrusted third party aggregator that peek privacy: An adversary 

queries the collected data-set to steal the privacy by taking 

advantage of the strong correlation among successive values in the 

series.  

Example II: Eve observe that Alice left the community. Eve can 

query the number of e-Lock state changes in the community at two 

successive time slots to guess which house Alice left. 

Untrusted third party: the collected dataset could be borrowed by 

third party to accomplish research duties such as optimization or 

investigation tasks such as criminal inquiry. Unveiling time-series 

true/raw data may violate householder’s privacy. 

3.2 Threat Models 
Like other researches [5] in areas of privacy preservations, we 

assume that smart devices (e.g. e-Lock, etc.) in smart home and the 

cloud/server obey network communication schemes. However, 

both users and the aggregators could be untruthful since they can 

lie and they also have the intension to combine the information if 

possible. However we need at least a fraction of them (e.g. a 

majority) are honest. 

4. PROPOSED PRIVACY FRAMEWORK 

4.1 Markov Chain 
We assume that the state of an e-Lock 𝐿𝑖, (where 𝐿𝑖 ∈ 𝐿 =
{𝐿1 , 𝐿2 , … , 𝐿𝑛}, 𝑛 is the number of e-Locks in households) is 

sampled when there is an unlock/lock action. 𝐿𝑖 ∈ {0,1} where 0 

denotes unlocked and 1 locked. Let array 𝐿𝑡
𝑛 denote the state of all 

e-Lock at time 𝑡. There are 2𝑛 possible state of all e-Locks. 

Assume there are 𝑚 family memebers. The presence of each 

person in the household is also monitored as 𝑃𝑖 ∈ {0,1} where 0 

denotes absence and 1 presence. At the time instant 𝑡, the presence 

of all members {𝑃1 , 𝑃2 , … , 𝑃𝑚} is denoted as an array 𝑃𝑡
𝑚. There 

are 2𝑚 possible state of the presence of all 𝑚 family members.  

Thus, we model the joint probability distribution of the e-Lock 

states and the presence state over 𝑥 time instants:  

𝑃(𝐿𝑡
𝑛, 𝑃𝑡

𝑚) = ∏ 𝑃(𝐿𝑡
𝑛|𝐿𝑡−1

𝑛 )𝑃(𝑃𝑡
𝑚|𝐿𝑡

𝑛)

𝑥

𝑡=1

                (1) 

Based on (1), we can deduce a hidden Markov model for presence 

of persons, which can be characterized by three parameters: (a) the 

initial presence, (b) a state distribution and (c) a conditional 

distributions. After defining the 3 inputs with concrete details, our 

hidden Markov model should assess the interrelated association 

between the pair (L, P) in which, array P with all elements being 0 

is what both the burglar and the security company are interested in. 

4.2 Differential Privacy 
Let 𝐼𝑖 denote all e-Lock state change data related with one smart 

home or even a community. Denote 𝐼 = ∑ 𝐼𝑖
𝑛
𝑖  which is the 

collected dataset related with 𝑛 persons { 𝐼1, 𝐼2 , …, 𝐼𝑛}. We 

demand the following holds 

Pr[𝐴(𝐼) = 𝑥] ≤ 𝑒⋲ Pr[𝐴(𝐼′) = 𝑥]              (2)  

where 𝑃𝑟 is a probability distribution over randomness of 

algorithm 𝐴(𝐼) where 𝐼 is the input, 𝐼′ is the addition or removing 

of one single user, and 𝑥 is an any value output.  

Let 𝑸 ={𝑄1, 𝑄2, … 𝑄𝑛}be any query sequence, we demand the 

following holds: 

|𝑄(𝐼) − 𝑄(𝐼′) |𝑝   ≤   ⧍𝑝(𝑄)                       (3)  

where 𝑝 ∈ {1,2}, 𝑄(𝐼) and 𝑄(𝐼′) are each vectors, ⧍1(𝑄) measures 

Manhattan distance ∑ |𝑄𝑖(𝐼) − 𝑄𝑖(𝐼′)|𝑖  and ⧍2(𝑄) Euclidean 

distance (√∑ (𝑄𝑖(𝐼) − 𝑄𝑖(𝐼′))2
𝑖 ). 

4.3 Hyberproperty 
The malicious third-party may query the true data and revise its 

belief from the keep going interaction thereafter [6]. An 

experiment £ =< 𝑆, 𝑏𝐻 , 𝜎𝐻 , 𝜎𝐿 > is processed where S is the 

query system, 𝑏𝐻 denotes prebelief about high state, 𝜎𝐻 denotes 

high state and 𝜎𝐿 denotes low state. The third-party / agent predicts 

the output distribution ƿ′𝐴 and 𝑆 produces a state 𝜎′ ∊ ƿ′ =

⟦𝑆⟧(𝜎𝐿̇ ⊕ 𝑏𝐻̇). The agent can infer a postbelief: 𝑏′𝐻 = (ƿ′
𝐴

|𝑜) ⥜ 𝐻 

where 𝑜 is the low projection of the output state. With £, we, 

instantiating Bayes’ rule on these probabilities, get Bayesian 

inference: 

𝐵𝐼(£, 𝑜) =
𝑏𝐻(𝜎𝐻)•(⟦𝑆⟧𝜎𝐿̇⊕𝜎𝐻̇⥜𝐻̇ ))(𝑜)

(∑ 𝜎′𝐻: 𝑏𝐻(𝜎′𝐻)•(⟦𝑆⟧𝜎𝐿̇⊕𝜎𝐻̇⥜𝐻̇ ))(𝑜))
           (4)  

5. DISCUSSION AND FUTURE WORKS 
Our future works will centrally focus on privacy preservation via 

perturbing distributed noisy information to time-series e-Lock state 

change data to minimize the privacy loss with lower utility-privacy 

tradeoff. In addition, how to extend hidden Markov Chain method 

to precisely quantify privacy loss and corresponding counter-

measures via differentially private protection will be studied. 
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