Paul Soulier and Depeng Li

Memory and type safety for embedded systems

UNIVERSITY Deptartment of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, 96822

of HAWAI'I
MANOA

@ Introduction > ) { ) Type and Memory Safe

Type and memory safe languages are well understood with many

@ Future Direction >—

foo(type A) e Formalization of the type system

» Addressing semantic issues

TN\ necessary for a practical language

 This research is part of a larger

Security Vulnerabilities th at existing implementations. Embedded systems pose unique challenges
.. to type systems that are not addressed by most languages where the
or1 g]_n ate from memory—rel ated necessity to interact with hardware or protocols necessitates the ability
. . to precisely define and manipulate unboxed data types and structures
errors h ave ObVIOusly neg atlve without compromising performance.
CcOn Sequence S tO System S pro gr AMS f)’;%;&teogﬁléiglgsjgmeterization retains performance but can
and embedded SyStemS . Many Boxing provides flexibility at the cost of performance. O-
appllcatlon domalns have Static boxing combines benefits from other methods while
b en efitt e d fr om a dvan ces in minimizing code bloat and maintaining performance. O-
programming languages that have

minimized or eliminated these
types of errors while the vast o v () Anti-Aliasing

disallowing aliasing

effective alternative to C.

11
—1001001
0111

>
JE3

@ Objective > \ :

Unify type and memory safety, \

>
|

001001|=—

anti-aliasing properties, and
language-based memory

containment into a type system () Memory Containment
. Multi-processor devices have become commonplace and with the
th at pOSSGSS . proliferation of such architectures, the complexity of maintaining
o o o memory integrity also increases. Language-level support for
= SlIIlpllClty concurrency offers many advantages in providing memory-safe
o operations. Software-based isolation can confine memory access to
~ EXp ressive pOWGI‘ within a given process and ensure accesses outside of the process

Statl(} type CheCkIIlg Proper inter-thread memory access is enforced through language

mechanisms. O

N _/

11

0111

001001|le——

1 15 : employ proper IPC mechanisms.
» Early error identification through ploy prop /

IPC

project to design a complete

=

ojul adAy

Thread-local data is confined to the originating thread; external “ B

references are disallowed. O\

11
001001}k
| o111

Contacts:

Paul Soulier: psoulier@hawaii.edu
Depeng Li: depengli@hawaii.edu

11
>1001001
0111

language with a focus on secure
application development

- \
20031 ~1%%%991 \: Aliasing in a software system occurs when a single object in memory is addressed by more than @ CO n CI u s I 0 n / A

maj Ority Of embedded SyStemS arc 1 one reference. Aliasing has the unwanted potential to reduce code comprehensibility and
: : : . X li d methods of code verificati d analysis. This, in turn, can lead " :
Stlll ertten 11 the C PrOgrammlng I 1 lcl?lrerlll?ticci?;[aetzgtstg}cit(e:ha?;s 3\7}::’1 ggj eectsearecri[a(r)lrilpi?atggeilg flrsle;gpeitercll :/bla;ls.cggirfg V;loue Wlth more COmPUtathnal pOwer
1 an gu a g e — an inh er ently UNS afe lmﬂ VS. g(x) | \iemantics, linear types, and specific pointer binding rules, aliasing can be minimized. an d WiI‘ el ess conne CtiVity b ein g
: h(x) (h() ; inimiz iases (e.g. : :
language. This research explores fanction parameters, local variables, te) incorporated into smaller
the features necessary fOI‘ all Linear types provide a degree of flexibility found in pointers while paCkageSa embedded SyStemS arc

finding their way into many critical

——O Pointer binding rules are used to manage unwanted aliasing applic ation S Such as insulin

pumps, sensor networks, and
industrial control devices. Given
the potential consequences of
security flaws in such devices the
need for new type systems and
programming languages to help
prevent software flaws is a critical
component to ensuring the security
of future embedded software
systems.

Refrences:

« E. Brewer et al, Thirty Years is Long Enough: Getting Beyond C., Proceedings of the 10th conference on Hot Topics in
Operating Systems-Volume 10. USENIX Association, 2005,.

« J. Shapiro, Programming Language Challenges in Sys- tems Codes., Object Oriented Real-Time Distributed Computing
(ISORC), 2008 11th IEEE International Symposium on. IEEE, 2008.

« M. Tofte, J. Talpin. Region-based memory manage- ment., Information and Computation 132.2 (1997): 109-176.

« D. Grossman, et al. Region-based memory management in Cyclone., ACM SIGPLAN Notices. Vol. 37. No. 5. ACM, 2002.
« J.T. Morrisett, et al. Cyclone: A Safe Dialect of C., USENIX Annual Technical Conference, General Track. 2002.

« H.J. Boehm. Threads cannot be implemented as a library., Technical Report HPL-2004-209, Hewlett Packard, 2004.

« J.R.von Behren, J. Condit, E.A. Brewer. Why Events Are a Bad Idea (for High-Concurrency Servers)., Ho- tOS. 2003.




