Dylan Kobayashi
ICS 661
Final Report

Quasi GPS

Introduction

While mobile devices increase in popularity, so too are the appeals of apps that are aware of the
user's location. Having information tailored to a user makes the user experience more friendly. But for
some apps knowing a user's location is necessary to work. One such example are services like
MapQuest and Google Maps, where a user can input a desired destination and get not only the location,
but how to get there as well. The goal of my project was to create a quasi GPS that is able to parse a
user's input and correctly move the user's icon to the specified location. In this format it doesn't quite
make a good GPS, since most people want to know how to get to the location, not setting their location
to the specified destination. In terms of a practical usage GPS application, instead of moving the user's
icon, it would give a route instead. My reasoning behind moving the icon is that I knew I would not
have enough time to be able to implement a real Geo-coordinate system. Moving the icon was done
with the assumption that users want to get to their destination and probably wish to ask for more
directions. Without moving the icon, I had no way to change their current position from which they ask
for new directions. In theory, if the icon was able to correctly get to the specified location, then it
should be able to trace the route.

Depending on the focus, the Quazi GPS applies to a couple different areas. The first being
something similar to MapQuest and Google Maps, where a user can ask for directions and it will give a
route. As it is currently designed, with a relatively small amount of alteration it can be made to trace
routes instead of changing the current position of the user. Taking this a step further is that voice
commands can then be implemented. If the parse is completed, it can then work with voice recognition
software to take user voice commands, rather than having to type them out. This would be preferable as
most people who want directions are usually driving.

Diverging a little, there was one other possibility that could be done with the system. Working
with directions and location could be a stepping stone to modeling an Al. This could be one part of a
larger Al system. The different usage applications could then apply, to autonomous robots, modeling a
population, or even game Al.

Constructing the base system

Thankfully there were some preexisting libraries to handle some of the base requirements, but I
had to write something to handle nearly every seen aspect. Everything from the display to the actual
mechanics I had to write some amount. The displaying of the elements was perhaps the easiest but very
time consuming. The library I used worked with OpenGL and came with a couple downloadable sprite
manipulator classes. However, I had to figure out how to position and move them. Positioning was
strange in the sense that the monitor's origin point is the top left as opposed to the bottom left. Drawing
was also done with respect to the top left corner of an image. Movement in real time was then

dependent upon the objects having a speed which determined how far it moved with respect to time.
The difficult part I quickly discovered was that the cycle time was never consistent, so I needed a way
to calculate exactly how much time passed to prevent the icon from moving at inconsistent speeds.

Java has the build in swing libraries, but there was difficulty with using them because OpenGL
controlled the entire active window. Swing would require a different window and that caused a bunch
of update problems. I ended up creating my own input detection class. It only checked for alphas,
space, backspace and enter. I did not check for more because implementing those alone was very time
consuming. My input detection class operated off of three states: down, just pressed, and just released.
In order to work correctly, I needed to also make sure I updated(polled for information). Because a
different class stored the user input, the polling and button checking had to be done in a proper order
otherwise the status of the button was either “down” or “not down.” The “just pressed” and “just
released” were essential to gathering input because the system ran in real time. If the button check was
only based upon whether or not a button was “down,” unless a person was really quick, the system
almost always ended up believing that the user was inputting multiple of that same button.

Constructing the mechanics

When I finally got the base system setup, I did a simple parse using finite state automata to
check for exact structure: [Verb] [to] [the] [Noun]. Where Verb was from a predefined set of verbs(go,
touch, walk, run) and Noun also had to be from a predefined list of words that related to the visible
objects(tree, bush, plant, shurb, etc). Although this worked, using a FSA was rather cumbersome and
didn't scale well. I tried to switching over to context free grammar(CFG) in an attempt to reuse code
from assignment 4. I very quickly found that this was a bad idea as any sentence that didn't parse just
ended up outputting: “invalid structure: [sentence parse],” the error I defined when the system could
not parse something. The issue came as result of the CFG being too strict. If anything was encountered
that did not fit nicely, then it would error. Although good on one hand, incredibly frustrating because
many sentences | felt should have been parsed, didn't parse only because I didn't have all of the base
structure to account for small variations in grammar. Furthermore, any undefined grammar would end
up failing the parse because CNF wants to correctly categorize all words. In the early stages of testing,
I needed my system to simply work. I also wanted to keep some leeway because people can speak
different ways and be grammatically correct. At this point in time I ended up creating a hybrid between
FSA and CNF where a user could follow a format but use unknown words or extra words. The parse
did a best case scenario that just ignored values it didn't know what to do with.

Part of the problem was that I had not implemented periods(.), commas(,) apostrophes(') or any
other punctuation symbols besides spaces. As an example, the sentence “go to the tree” makes perfect
sense and the parser could handle that no problem. But when it got to compound values like “Go to the
tree, then go to the fountain”. The commas wouldn't be possible to type. When the parser tried working
with it, I would detect more than one sentence. But a sentence shouldn't contain multiple sentences.
Also, if multiple parsings were obtained, I needed to make sure it was looking for the parse that
correctly “looked” like a command.

At this point with the parse working at least somewhat decently I started to implement the
positional and relational movement mechanics. As stated before, what if I wanted to give command
“Go to the tree, then go to the fountain.” Even if the parse could handle it, my system could not. At the
time it could only handle one destination at a time. The quickest fix ended up being implementing a
checkpoints system. The parse would activate and create checkpoints where the icon needs to move to.
After reaching a checkpoint it would continue through the rest.

Going to the tree is fine, but for a more practical system, it would be better to go to the [front/
north/ left / southeast / etc] of the tree. The map relational values were fairly easy to implement, as it

always had a specific modifier based upon object location. For example the north of [noun] always has
a y-axis modifier. The difficulty came from user dependent coordinates. For example, if I want the user
to go to the left of the tree, that doesn't always mean the west of the tree. This required positional

calculation and presented some difficulties since I used rectangular images.
Gotothe left of the tree User (U), Tree(T)

U U \
u—"T T\ T .

The other positional calculation I used was a direct move reference. For example, when given
the command “go left to the tree,” the icon should start moving left of whatever way it is oriented. A
couple of support function needed to be created, but overall not too difficult. The real issue was that
there was the possibility of ambiguity. What I mean by that is, what if there is no tree? The command
“go left” works and the icon will travel left until told to stop or encounters the boundaries of the map.
By that reasoning, it was my opinion that the “Go left to the tree” should operate in the same manner.

Continue left until encountering a tree, however it will not go past a tree.
Go left to the tree

The last major feature that I was able to implement was an way of avoiding objects. This
presented a large number of difficulties because of the mechanical nature the different parse
possibilities. The command “Go the the tree while avoiding the fountain” is fully contained in one
sentence. However, an avoid doesn't have to be part of a sentence. For example, I can say: “Go to the
tree. Avoid the fountain.” There are also different ways to portray the meaning of, avoid. Other cases
can be “dont touch the [noun]” and “stay away from the [noun].” I am sure there are other ways that I
missed as well. Getting to this point proved that my current parse was insufficient. The final form of
my parse was a mix between CFG and event representation.

No matter how lenient, there is a base vocab that needs to be adhered to in order for the parser
to process commands. Exact grammar and syntax are hard to implement without needing to account for
many different vocab words and sentence structures, many of which I may not be able to think up. I
ended up creating a hybrid parse that first converted words to major part of speech then based upon the
word types encountered further checks would be done. Some with more detail other based upon the
necessity of word types. For example, proper structure would prohibit a [noun] existing by itself. Each
of my nouns needed to have some action performed on it. As an example, “go to the tree then go to the
fountain” are valid because the nouns are paired with verbs. But, “go to the tree then the fountain”
would not be valid because fountain is not able to pair with an action. Although grammatically correct,
my parse isn't able to handle it.

The parser is able to handle “walk to the left of the tree” and shows the icon moving to the tree
with a left displacement based upon starting location. It doesn't make the user move left from their
beginning orientation. “walk left to the tree” will move the icon in a left direction based off of
orientation until the tree. Note the following ways to use an avoid:

“walk left to the tree avoid the fountain”
“dont touch the fountain move to the tree”
“go left stay away from the fountain stop by the tree”

Each of these commands(last I checked), do result in the same action. Move left based off of
starting orientation, don't let the user icon move over the fountain, if encounter a tree, stop” They are

able to work because of the event handling which actively tries to pair up nouns with actions. A major
thing to note is that in the current implementation it is only possible to avoid one object during a move.
This is because my event pairing currently pairs only one avoid with one command.

As described throughout Constructing the Mechanics section, there are a number of hacks that
have been performed to get things working. Given more time and resources, the first thing that I would
change is from a checkpoint system to an action based system. As is, when a command is given,
everything is processed with reference to where the icon is at the time of command. Meaning if I give a
multi part command and end with something like “walk to the left of the tree” it will be on the left side
with respect to where the icon was when the command was given, not with respect to where the icon
would be when it reaches that command. I would also have like to add in valid move areas, or
predefine the map with move zones and noun zones, much like a neighborhood grid. The third thing I
would like to change is that the input currently doesn't handle punctuation. Finally, I would like to
change the parser into a fully implemented system maybe a fully realized CFG or frame based. The
hybrid system I have was only done to save time which I was very short on. I am not sure what tools I
would use given the option, more research would have to be done before I can give a solid answer.

Analysis:

The system parses correctly the following structures:

[verb] [noun] — moves to the noun

[verb][direction to move] [noun]—moves in direction with respect to orientation. Stops if encounters
noun

[verb] [destination position of][noun] — moves to noun with offset based off of position.
each of these structure can then have one [avoid][noun] before, in the middle, or after.
From there each of the structure can be combined to form compound commands.

Unique commands:

“reset” — randomizes the board and clears out all checkpoints

[stop] — will clear out all checkpoints, creating the equivalent of stopping.
[verb][direction] — moves the icon in a direction with respect to orientation.

“barrelroll” — performs a barrel roll.

All part of speech, noted by brackets [], must be defined explicitly in vocabulary.

The current implementation doesn't take into account valid movement paths. So although it will be able
to correctly get to a noun and the position desired, the direct path will be direct with the option to avoid
one object. Due to this, it could be argued that the current implementation doesn't meet the goal, as it is
missing a fairly important aspect that similar systems like MapQuest(MQ) and GoogleMaps(GM) are
able to handle.

One thing that is unique to this system is positional relative destinations. “Walk to the left of the tree”
and it will go to the left based upon starting location. This usually cannot be done with navigators like
MQ and GM because most addresses can only be accessed from one location(street address).

Conclusion

I learned many things from this project. Admittedly, most were not about parsing. Creating the
system from scratch may have been a bad idea considering how much time I spent just trying to get

things in a basic working state. Even after getting a basic state established, I need to continually update
the system to then handle the grammar and structure possibilities. Through trial and error I learned
much about design, getting user input, and the two dimensional coordinate system. When I started to
implement the parsing component, I found that highly detailed and specific parses don't work too well
when I don't have a fully fleshed out vocabulary. This forced me to create a hybrid system that
probably works nowhere near as well as a properly implemented parser. But the problem still remains
with what and how to work with the parsed sentence. Since a sentence can be arbitrarily long, whatever
converts the parse into actions needs to work in a recursive fashion. Also, a sentence may be parsed in
different ways, so the parser needs a validity component, that may be dependent upon explicit
knowledge of the map. For example, “go to the green house” may be parsed correctly. But only
knowledge of the map would be able to validate whether or not there is a green(adj) house(noun) which
the icon can move to. Parsing is very complex in and of itself, applying additional constrains only
increases the difficulty.

Appendix:

Sample Run:

“go to the outhouse” - Page 5

“go backward to the cat” - Page 7

“walk to the tree then run to the fountain next touch the light after that move to the cat finally find the
outhouse” - Page 8

"go to the fountain avoid the tree" — Page 12

Code — Page 15

“go to the outhouse”

l\‘} Quazi GPS

Type a command, pr
g0 to the outhouse

Enter> when finished:

%4 Quazi GPS

Parse result:
[verb][building n] Press <Enter= to continue.

%4 Quazi GPS

Parse result:
[verb][building n] Press <Enter= to continue.

“g0 backward to the cat”
«§4 Quazi GPS

Type a command, press <Enter> when finished:
go backward to the cat

34 Quazi GPS

Parse result:
[verb][n dir][cat n] Press <Enter> to continue.

,-5} Quazi GPS . o o . a =) S |

Parse result:
[verb][n dir][cat n] Press <Enter> to continue.

“walk to the tree then run to the fountain next touch the light after that move to the cat finally find the
outhouse”

%4 Quazi GPS

Type a command, press <Enter> when finished:
walk to the tree then run to the fountain next touch the light after that move to the cat finally find the outhouse

«§4 Quazi GPS

P It:
[\?:fg]ltf:ge n][unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]

%4 Quazi GPS

P It:
[\?:fg]ltf:ge n][unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]

%4 Quazi GPS

P It:
[\?:fg]ﬁf:e n][unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]

%4 Quazi GPS

[verb][tree n] [unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]]

%4 Quazi GPS

[verb][tree n] [unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]]

—
48] Quazi GBS . . (=

Fountain

Parse result:
[verb][tree n][unknown][verb][fountain n][unknown][verb][light n][pos cnd][unknown][verb][cat n][unknown][verb][building n]

“go to the fountain avoid the tree”

%4 Quazi GPS

«§4 Quazi GPS

Parse result:
[verb][fountain n][mv cnd][mv cnd loc] Press <Enter=to continue.

-
%4 Quazi GPS » -

Parse result:
[verb][fountain n][mv cnd][mv cnd loc] Pres

Enter> to continue.

Code:

Game Class — Page 15
Entity Class — Page 24
User Class — Page 25
Input Class — Page 28

TextArea Class — Page 36

Game Class

import static org.lwjgl.opengl. GL11.GL_COLOR_BUFFER BIT;
import static org.lwjgl.opengl.GL11.GL DEPTH BUFFER BIT;
import static org.lwjgl.opengl.GL11.GL_DEPTH_TEST;

import static org.lwjgl.opengl. GL11.GL_ MODELVIEW;

import static org.lwjgl.opengl.GL11.GL PROJECTION;

import static org.lwjgl.opengl.GL11.GL TEXTURE 2D;

import static org.lwjgl.opengl.GL11.glClear;

import static org.lwjgl.opengl.GL11.glDisable;

import static org.lwjgl.opengl.GL11.glEnable;

import static org.lwjgl.opengl.GL11.glLoadldentity;

import static org.lwjgl.opengl.GL11.gIMatrixMode;

import static org.lwjgl.opengl.GL11.glOrtho;

import static org.lwjgl.opengl.GL11.glViewport;

import java.awt.Font;
import java.io.IOException;
import java.util. ArrayList;
import java.util. Random;

import javax.swing.JOptionPane;

import org.lwjgl. LWJGLException;

import org.lwjgl.Sys;

import org.lwjgl.input.Keyboard;

import org.lwjgl.input.Mouse;

import org.lwjgl.opengl.Display;

import org.lwjgl.opengl.DisplayMode;

import org.lwjgl.opengl.GL11;

import org.newdawn.slick. TrueTypeFont;
import org.newdawn.slick.opengl. TextureImpl,

import com.esotericsoftware.kryonet.Client;
import com.esotericsoftware.kryonet.Connection;
import com.esotericsoftware.kryonet.Listener;

import com.esotericsoftware.kryonet.Server;

public class Game {
//necessary LWJGL variables
String WINDOW _TITLE = "Quazi GPS";
boolean fullscreen = false;
int width = Const.wwidth;
int height = Const.wheight;
boolean running = true;

//standard game variables

int gamestate = 0;

Input input = new Input();

TextureLoader textureLoader;

private TrueTypeFont[] font = new TrueTypeFont[Const.fontAmt];
static Random gen = new Random();

//Timing variables
private static long timerTicksPerSecond = Sys.getTimerResolution();
long sTime;

//Game Variables

Sprite[] assets = new Sprite[Const.artAssetTotal];
TextArea inputZone = new TextArea(this);
ArrayList<Entity> entities = new ArrayList<Entity>();

String debugm ="";

public Game()throws IOException {
try {
setDisplayMode();
Display.setTitle(WINDOW_TITLE);
Display.setFullscreen(fullscreen);//always set to false for the moment
Display.create();
glEnable(GL TEXTURE 2D);
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL PROJECTION);
//something in here enables fonts. Note: fonts still need to be drawn last with the
activator function.
GL11.glShadeModel(GL11.GL_SMOOTH);
GL11.glDisable(GL11.GL_LIGHTING);
glMatrixMode(GL PROJECTION);
GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.01);
GL11.glClearDepth(1);

GL11.glEnable(GL11.GL_BLEND);

GL11.gIBlendFunc(GL11.GL_SRC ALPHA, GL11.GL_ONE MINUS SRC ALPHA);
//
glLoadlIdentity();
glOrtho(0, width, height, 0, -1, 1);
glMatrixMode(GL _MODELVIEW);
glLoadlIdentity();
glViewport(0, 0, width, height);
textureLoader = new TextureLoader();

} catch (LWJGLException le) {
System.out.println("Game exiting - exception in initialization:");
le.printStackTrace();
return;

loadArt();
initEntities();

}//end constructor

//

private boolean setDisplayMode() {
try {
// get modes
DisplayMode[] dm = org.Iwjgl.util.Display.getAvailableDisplayModes(width,
height, -1, -1, -1, -1, 60, 60);

org.Iwjgl.util.Display.setDisplayMode(dm, new String[] {
"width=" + width,
"height=" + height,
"freq="+ 60,
"bpp=" + org.lwjgl.opengl.Display.getDisplayMode().getBitsPerPixel()
1

if(Const.debug){
for(int 1 = 0; 1 < dm.length; i++){
System.out.printin("DM["+ i+ "]" + dm.toString() + ". Resolution(WxH): " +
dm[i].getWidth() + "x" + dm[i].getHeight() + "@" + dm[i].getBitsPerPixel());

}
}
return true;
} catch (Exception e) {

e.printStackTrace();
System.out.println("Unable to enter fullscreen, continuing in windowed mode");

}

return false;

}//end setdisplaymode

private void loadArt(){

assets[Const.aTree] = getSprite("assets/tree.png");
assets[Const.aFountain] = getSprite("assets/fountain.png");
assets[Const.aCat] = getSprite("assets/cat.png");
assets[Const.aLight] = getSprite("assets/light.png");
assets[Const.aBuilding] = getSprite("assets/building.png");
assets[Const.aUser] = getSprite("assets/userN.png");
assets[Const.aUser+1] = getSprite("assets/userNE.png");
assets[Const.aUser+2] = getSprite("assets/userE.png");
assets[Const.aUser+3] = getSprite("assets/userSE.png");
assets[Const.aUser+4] = getSprite("assets/userS.png");
assets[Const.aUser+5] = getSprite("assets/userSW.png");
assets[Const.aUser+6] = getSprite("assets/userW.png");
assets[Const.aUser+7] = getSprite("assets/userNW.png");

//and fonts

Font awtFont = new Font("Times New Roman", Font. BOLD, 12);
font[Const.fontDebug] = new TrueTypeFont(awtFont, false);
awtFont = new Font("Times New Roman", Font.PLAIN, 20);
font[Const.fontCard] = new TrueTypeFont(awtFont, false);

}//end load art

//

public Sprite getSprite(String ref) {

return new Sprite(textureLoader, ref);

}//end getSprite

//

private void initEntities(){

User temp1 = new User(50,50, Const.userSize,Const.userSize, assets[Const.aUser],

this);

entities.add(temp1);

Entity temp2 = new Entity(200,400, Const.objectW,Const.objectH,
assets[Const.aTree], "tree");

entities.add(temp2);

temp2 = new Entity(400,200, Const.objectW,Const.objectH, assets[Const.aFountain],
"fountain");

entities.add(temp2);

temp2 = new Entity(400,200, Const.objectW,Const.objectH, assets[Const.aCat], "cat");

entities.add(temp2);

temp2 = new Entity(400,200, Const.objectW,Const.objectH, assets[Const.aBuilding],
"building");

entities.add(temp2);

temp2 = new Entity(400,200, Const.objectW,Const.objectH, assets[Const.aLight],

ulightn);
entities.add(temp?2);
randomize();
}//end load art

//randomizes location of objects and user. Clears out user checkpoints
public void randomize() {

((User) entities.get(0)).dCount = 0;

int x=0;

inty =0;

boolean[] spots = {false, false, false, false, false};

int j;

for(inti=1;1<6; i++){

j = (int) (Math.random() * 5);

while(spots[j] == true){
j = (int) (Math.random() * 5);
b

spots[j] = true;

it

if(i == 1){
x =100;
y =50;
x += (int) (Math.random() * 314);
y += (int) (Math.random() * 250);
entities.get(j).cx = X;
entities.get(j).cy =y;

}

else if(i == 2){

x =514,
y =50;
x += (int) (Math.random() * 314);
y += (int) (Math.random() * 250);
entities.get(j).cx = X;
entities.get(j).cy =y;

§

else if(i == 3){
x =100;
y =300;
x += (int) (Math.random() * 314);
y += (int) (Math.random() * 250);
entities.get(j).cx = X;
entities.get(j).cy =y;

§

else if(i == 4){
x =514,
y =300;
x += (int) (Math.random() * 314);
y += (int) (Math.random() * 250);
entities.get(j).cx = X;
entities.get(j).cy =y;

§

else if(i == 5){
x=312;
y =150;
x += (int) (Math.random() * 400);
y += (int) (Math.random() * 300);
entities.get(j).cx = X;
entities.get(j).cy =y;

§

}//end for each obstacle randomize

x=0;

y=0;

x += (int) (Math.random() * 1024);
y += (int) (Math.random() * 600);
entities.get(0).cx = x;
entities.get(0).cy =y;

}//end randomize

public void loop(){

sTime = getTime();

while(running){
glClear(GL_COLOR_BUFFER BIT | GL DEPTH BUFFER BIT);
glMatrixMode(GL MODELVIEW);

glLoadlIdentity();
switch(gamestate) {
case Const.gsTitle:
{
//show title
drawAssets();
drawFonts();//fonts must be drawn after assets.
inputProcess();

entities.get(0).update();//hard coded, for updating user icon

//gamestate = Const.gsGameLoop;
break;
}//end case title

case Const.gsGameLoop:

{
//gameloop

inputProcess();

//draw function

drawAssets();

drawFonts(); //fonts must be done last

break;
}//end case gameloop

default:

{
b

}//end switch gamestate
Display.update();
//System.out.print(".");
if (Display.isCloseRequested() ||
Keyboard.isKeyDown(Keyboard. KEY ESCAPE)) {
running = false;
}

}//end while running
Display.destroy();
}//end loop

break;

//

//process all input from keyboard
//this method assumes ready to grab player input
public void inputProcess(){

String bval ="";
char alpha ="'a';
//dont forget to poll.
input.poll();

for(inti="a"; 1 <="7'; i++){
alpha = (char) 1;
bval = alpha + "";
if(input.isPressed(bval)){
inputZone.addTolnput(alpha);
System.out.println("attempting to add:" + alpha);

v/

if(input.isPressed(Input.space)) {
inputZone.addTolnput(' ');
System.out.println("attempting to add: [space]");

}

if(input.isPressed(Input.bkspb)) {
inputZone.delChar();
System.out.println("attempting to delete");

}

if(input.isPressed(Input.entb)){
inputZone.enterButton();
System.out.println("attempting to enter");

}

}//end input process

public void drawAssets(){

for(int i = entities.size() -1; 1 >=0; i--){
entities.get(i).draw();
}

if(Const.debug){
}

public void drawFonts(){

TextureImpl.bindNone(); //this is absolutely)$(*@&(necessary to render fonts. Why?

IDK
String output;
if(gamestate == Const.gsTitle){
if(inputZone.isPolling()){
output = inputZone.getIM();
font[Const.fontCard].drawString(0, inputZone.getTextAHS(), output);
output = inputZone.getUI();
font[Const.fontCard].drawString(0, inputZone.getTextAHS() + 20 ,
output);
}
else{
output = "Parse result:";
font[Const.fontCard].drawString(0, inputZone.getTextAHS(), output);
output = inputZone.getPI();
font[Const.fontCard].drawString(0, inputZone.getTextAHS() + 20 ,
output);
}

v/

}//end draw fonts

//

public static long getTime(){
return (Sys.getTime() * 1000) / timerTicksPerSecond;
}

/1
public static void main(String[] args) throws [OException{

Game ng = new Game();

ng.loop();

}//end main
}//end class

Entity Class

public class Entity {

//pos relate to upper left, center relates to center
protected int cx, cy; //center x y

protected int height, width; //height width
protected Sprite img; //hold image to draw itself.
protected String type;

/%%

@param xcenter
@param ycenter
@param h
@param w
@param image

* X ¥ ¥ ¥ ¥ *

*/

public Entity(int xcenter, int ycenter, int w, int h, Sprite image, String
description){
cX

cy

xcenter;
ycenter;

height = h;
width = w;

img = image;
type = description;

}//end constructor

//POS relates to upper left corner
public int getXPos(){return cx - width/2;}
public int getYPos(){return cy - height/2;}

//draw based off of position
public void draw(){

//

img.draw(cx - width/2, cy - height/2);
}

//nothing currently in super class because different entities will implement
differently.
public void update(){};//empty class for implementation by subclasses

}//end object

User Class

public class User extends Entity {

int speed = 3;
long lastUpdateTime;

//have bits on figuring out how to move

//checkpoints? Destination locations?

int dCount = 9;

int maxD = 20;

int[] destX = new int[maxD];//at most, maxD checkpoints

int[] destY = new int[maxD];

int facing = 0; //0 = north, 1 = NE, 2 = E, ...6 = w, 7 = nw.

Game map;

//constructor

public User(int xcenter, int ycenter, int h, int w, Sprite image, Game session){
super(xcenter, ycenter, h, w, image, "user");
map = session;

lastUpdateTime = Game.getTime();

//hardcoded to test move speeds, and updater fucntion
addDestination(100,100);
addDestination(100, Const.wheight-200);

}//end constructor

//Update is for the real time movement of the user
public void update(){
int movedHorizontal

= 0;//0 is no move, -1 = west, +1 = east.
int movedVertical = 0;/

/ @ is no move, -1 = north, +1 south

//update at roughly 40 fps.
if(Game.getTime() > lastUpdateTime + 40){
lastUpdateTime = Game.getTime();
//if there are destinations
if(dCount > 0){
//if there is a difference in current x and destination x
if(destX[0] != cx){
int dx = Math.abs(cx - destX[0]);
if(dx < speed){
cx = destX[0];

}

else if(destX[0] > cx){
CcX += speed;

movedHorizontal = 1;
}
else{

cxX -= speed;

movedHorizontal = -1;
}

}//end if dist difference
//if there is a difference in current y and destination y
if(destY[@] != cy){
int dy = Math.abs(cy - destY[0]);
if(dy < speed){
cy = destY[Q];
}
else if(destY[0] > cy){
cy += speed;

movedVertical = 1;
}
else{

cy -= speed;

movedVertical = -1;
}

}//end if y pos doesn't match

//if the destinations match, remove that destination point
if(cx == destX[0] && cy == destY[0]){
dCount--;
for(int i = @; i < dCount; i++){
destX[i] = destX[i+1];
destY[i] = destY[i+1];
}
}//end destinatin point update

}//end if there are destination
}//end 1/10 sec update

//if there was horizontal movement
int tempFace = 90;
if(movedHorizontal != 0){
tempFace = 2*(2 - movedHorizontal);//left is -1, right + 1. Direction
face 2 = east, 6 = west.
//if moved north
if(movedVertical == -1 && tempFace == 6) tempFace += 1;
else if(movedVertical == -1 && tempFace == 2) tempFace -= 1;
else if(movedVertical == 1 && tempFace == 6) tempFace -= 1;
else if(movedVertical == 1 && tempFace == 2) tempFace += 1;

facing = tempFace;
}
else if(movedVertical != 0){
tempFace = 2*(1 + movedVertical);//up is -1, down + 1. Direction face
@ = north, 4 = south.
facing = tempFace;

}

}//end update

public void addDestination(int x, int y){
if(dCount < maxD){

destX[dCount] = x;
destY[dCount] = y;
dCount++;

}

}//end addDestination

/**get modifiers for facing value.
*if facing:
*N: (@,-1) since monitor origin is in top left, NE:(1,-1), etc
*
*

* @param xy array that will be changed
* @param afterMod a direction to turn. @:forward, 1:right, 2:back,3:left
*/
/1*/
public void getFaceMod(int[] xy, int afterMod){
int nface = facing;
if(afterMod == 3){
//if turning left.
nface -= 2;
if(nface < 0){
nface += 8;
}
}
if(afterMod == 1){
//turning right
nface += 2;
if(nface > 7){

nface -= 8;

}

}

if(afterMod == 2){
//backward
nface += 4;
if(nface > 7){

nface -= 8;

}

}

switch(nface){

case O:
xy[@] = 0;
xy[1] = -1;
break;

case 1:
xy[@] = 1;
xy[1] = -1;
break;

case 2:
xy[@] = 1;
xy[1] = ©;
break;

case 3:

xy[@] = 1;
xy[1] = 1;
break;

case 4:
xy[@] = 0;
xy[1] = 1;
break;

case 5:
xy[e] = -1;
xy[1] = 1;
break;

case 6:
xy[e] = -1;
xy[1] = ©;
break;

case 7:
xy[e] = -1;
xy[1] = -1;
break;

}

}//end getfacing

//draw image based off of position
public void draw(){

//
map.assets[Const.aUser + facing].draw(cx - width/2, cy - height/2);

}//end class

Input Class

import org.lwjgl.input.Keyboard;
import org.lwjgl.input.Mouse;

1

public class Input {

final int alphaAmt = 26;//how many alphas are being tracked. 26 for standard english.
final int mbStart = alphaAmt; //index position of mouse button starts

final int mbAmt = 2; //MouseButton Amount

final int entBkspStart = alphaAmt + mbAmt;

final int entBkspAmt = 3; //enter, backspace, space

final int totallndex = alphaAmt + mbAmt + entBkspAmt;

//The following variables will track button states.
boolean[] pressed = new boolean[totallndex];
boolean[] released = new boolean[totallndex];
boolean[] down = new boolean[totallndex];

//string notations for buttongs
static final String mlb = "mlb";
static final String mrb = "mrb";
static final String entb = "entb";
static final String bkspb = "bkspb";
static final String space = "space";

//

public Input(){
//for each check value
for(int i = 0; 1 < totalIndex; i++){
pressed[i] = false;
released[i] = false;
down[i] = false;
H/

System.out.println("Debug: what is index of a, enter and backspace?");
System.out.println("a:" + getIndex("a"));

System.out.println("enter:" + getIndex(entb));
System.out.println("back space:" + getlndex(bkspb));

}//end constructor

//

//poll function will update the status of the button states.
public void poll(){

char cap ='A";
int index = 0;

nn,

String val ="";

//SLOWSPOT: this polls all the alphas on the keyboard.

//not all games need all alphas checked.

while(cap <='Z"){
val ="" + cap;
//if key is down
if(Keyboard.isKeyDown(Keyboard.getKeyIndex(val))) {

//if they key was not registered as already being down
if(!down[index]){
pressed[index] = true;//then it was just pressed
down[index] = true; //and it is now down
released[index] = false;//safety

//debug
if(Const.debug){
System.out.println(val + " was pressed");
}

W

else{
//if it was already down, then pressed needs to change to false.
//Note: there is not if statement, because an if statement is slower

than just assigning a value.

pressed[index] = false;

H

+//end is A key down

else{

//if the key is not down, but is listed as down...

if(down[index]){
down[index] = false; //change to not down
pressed[index] = false; //just in case, pressed goes false
released[index] = true; //key was just released
if(Const.debug){
System.out.println(val + " was released");

1%
else{
released[index] = false; //if it wasn't previously down, then
released is false.

h
}//end key was not down
capt++;
indext++;

}//end the keystate checks for alphas.

//now check for mouse button states.
for(int i = 0; 1 < mbAmt; i++){
if(Mouse.isButtonDown(i)) {
//if they key was not registered as already being down
if(!down[index]){
pressed[index] = true;//then it was just pressed
down[index] = true; //and it is now down
released[index] = false;
//debug

if(Const.debug){
System.out.println("Mouse button " + 1+ " was pressed");

}

1%

else{
//if it was already down, then pressed needs to change to false.
//Note: there is not if statement, because an if statement is slower

than just assigning a value.

pressed[index] = false;

h

+//end is A key down

else{

released is false.

//if the key is not down, but is listed as down...

if(down[index]){
down[index] = false; //change to not down
pressed[index] = false; //just in case, pressed goes false
released[index] = true; //key was just released
if(Const.debug){
System.out.println("Mouse button " + i+ " was released");

1%
else{
released[index] = false; //if it wasn't previously down, then

}

}//end key was not down

index++;
}//end for each mouse button poll

//Note to self: try break these function down further.
//adding individual keys later will be a major pain

//

//now check for enter and backspace button states.
if(Keyboard.isKeyDown(Keyboard. KEY RETURN)){
//if they key was not registered as already being down
if('down[index]){

3/
else{

pressed[index] = true;//then it was just pressed
down[index] = true; //and it is now down
released[index] = false;

//debug

if(Const.debug){

System.out.println("Enter button was pressed");

}

//if it was already down, then pressed needs to change to false.
//Note: there is not if statement, because an if statement is slower than

just assigning a value.
pressed[index] = false;

§
}//end is key down
else{
//if the key is not down, but is listed as down...
if(down[index]){
down[index] = false; //change to not down
pressed[index] = false; //just in case, pressed goes false
released[index] = true; //key was just released
if(Const.debug){
System.out.println("Enter button was released");
}
W/
else{
released[index] = false; //if it wasn't previously down, then released is
false.
h
}//enter key was not down
index++;
/1!
///Check for backspace now
/1!

//now check for enter and backspace button states.
if(Keyboard.isKeyDown(Keyboard. KEY BACK)){
//if they key was not registered as already being down
if('down[index]){
pressed[index] = true;//then it was just pressed
down[index] = true; //and it is now down
released[index] = false;

//debug
if(Const.debug){
System.out.println("Backspace button was pressed");
}
M/
else{

//if it was already down, then pressed needs to change to false.
//Note: there is not if statement, because an if statement is slower than
just assigning a value.

}
}//end is key down

else{
//if the key is not down, but is listed as down...
if(down[index]){
down[index] = false; //change to not down
pressed[index] = false; //just in case, pressed goes false
released[index] = true; //key was just released

pressed[index] = false;

false.

if(Const.debug){
System.out.println("Backspace button was released");
}
M/
else{
released[index] = false; //if it wasn't previously down, then released is

}//enter key was not down
index++;
/11
///Check for space now
/11
//now check for enter and backspace button states.
if(Keyboard.isKeyDown(Keyboard. KEY SPACE)){
//if they key was not registered as already being down
if('down[index]){
pressed[index] = true;//then it was just pressed
down[index] = true; //and it is now down
released[index] = false;

//debug
if(Const.debug){
System.out.println("Space button was pressed");
}
1
else{

//if it was already down, then pressed needs to change to false.
//Note: there is not if statement, because an if statement is slower than

just assigning a value.

false.

pressed[index] = false;

}
}//end is key down
else{
//if the key is not down, but is listed as down...
if(down[index]){
down[index] = false; //change to not down
pressed[index] = false; //just in case, pressed goes false
released[index] = true; //key was just released
if(Const.debug){
System.out.println("Space button was released");
h
1%
else{
released[index] = false; //if it wasn't previously down, then released is
}

}//enter key was not down
index++;

}//end poll

//

public boolean isDown(String val){
int pos = getlndex(val);

if(pos !=-1){
return down[pos];

}

return false;
}//end isDown

//

public boolean isPressed(String val){
int pos = getlndex(val);

if(pos !=-1){

return pressed[pos];

}

return false;
}//end isPressed
/1

public boolean isReleased(String val){
int pos = getlndex(val);

if(pos !=-1){
return released[pos];

}

return false;
}//end isreleased

//

//returns the index of a value being tracked.
public int getIndex(String val){

int retval = 0;

if(val.length() == 1){
//either a number, letter, or symbol.
char alpha ="'a';
char nval = val.charAt(0);

//only do a check if length ==
if(val.length() == 1){

while(alpha !=nval){
alpha++;
retval++;

if(alpha > '7'){
retval = -1;
break; //if it is not an alpha, then this will break one

character after lower case 'Z'

}
1%
}//end if length 1
else retval = -1; //no match for the alphas

}//if one character in size

if(val.contentEquals(mlb)){
retval = mbStart;

}+//if mouse left button

else if(val.contentEquals(mrb)) {
retval = mbStart + 1;

}+//if mouse left button

else if(val.contentEquals(entb)){
retval = entBkspStart;

}+//if mouse left button

else if(val.contentEquals(bkspb)){
retval = entBkspStart + 1;

}+//if mouse left button

else if(val.contentEquals(space)){
retval = entBkspStart + 2;

}+//if mouse left button

return retval; // -1 is an error
}//end getindex

}//end input class

TextArea Class

import java.awt.Rectangle;
import java.awt.geom.Line2D;

public class TextArea {

private String inputMarker = "Type a command, press <Enter> when finished:";

"nn,

private String parselnfo ="";

nn,

private String userInput ="";
private Boolean gettinglnput = true;

private int workAreaH = Const.wheight - Const.textArea;
private int workAreaW = Const.wwidth;

private Game session;

//Nocabulary

//Nouns

private String[] nounList = { "tree", "bush","plant", "oak", "brush", "green", "greens",
"fountain", "water","sprinkler", "sprayer"};//note this is a manual update

private String[] treeList= { "tree", "bush","plant", "oak", "brush", "green", "greens"};

private String[] fountainList= { "fountain", "water","sprinkler", "sprayer"};

private String[] catList= { "cat", "statue","furball", "animal", "kitty"};

private String[] lightList= { "light", "lamp","torch", "pole", "bulb"};

private String[] buildingList= { "building", "structure","outhouse", "bathroom", "facilities",

”WC", Hhouseﬂ } ;

//other

private String[] stopList= { "stop", "halt","freeze", "until"};

private String[] verbList= { "go", "walk","move","run","travel", "turn", "touch", "find" };

private String[] moveCondList= { "dont", "around","avoid","away" }; //iffy on travel and turn

private String[] posCondList= { "past", "in", "above", "below", "after", "beyond", "before",
"top", "bottom" };

private String[] fluffList= { "the", "a", "to", "toward", "from", "of", "ahead", "and", "side",
"by" };

private String[] nounDirList= { "left", "infront", "front", "right", "forward", "forwards",
"back", "backwards", "backward", "behind" };

private String[] mapDirList= { "up", "down", "north", "south", "east", "west", "northeast",

"northwest", "southeast", "southwest" };

private String[][] vocabList = {verbList, moveCondList, posCondList, fluffList, nounDirList,
mapDirList};

//constructor get a reference to session.
public TextArea(Game environment){
session = environment;

}

//add a character to the current input string
public void addTolnput(char nextc){
if(gettingInput){
userlnput = userlnput + nextc;
}

}

//delete the last char of the input string

public void delChar(){
if(userInput.length() > 0) {userInput = userInput.substring(0, userInput.length() - 1);}
}

//enter button was pressed, either parse string or clear the parse info from pane
public void enterButton() {
if(gettingInput) {
if(userInput.contentEquals("reset")){
resetInput();
}

else if(userlnput.contentEquals("barrelroll") ||
userInput.contentEquals("barelroll")|| userInput.contentEquals("barellroll")||

userInput.contentEquals("barrellroll")){
barrelRoll();
}

else if(userlnput.split(" ").length <= 2){
parseHalt();
}

else{

}
gettingInput = false;

nn,

userlnput ="";

parseString();

else{

gettinglnput = true;

//resets the board.

public void resetlnput() {
//need to fill this out later.
session.randomize();

//Attempts a barrel roll
public void barrelRoll(){
parselnfo = "Do a barrel roll!";

int x = session.entities.get(0).cx;
int y = session.entities.get(0).cy;
intd=4;

((User)session.entities.get(0)).dCount = 0;//remove checkpoints.

//go up

y-=4d;
((User)session.entities.get(0)).addDestination(X, y);
//go up left

y-=d;

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go left

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down left

yt=d;

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down

yt=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down right

yt=d;

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go right

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go up right

y-=4d;

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go up

y-=d;
((User)session.entities.get(0)).addDestination(X, y);
//go up left

y-=4d;

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go left

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down left

yt=d;

x -=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down

yt=d;
((User)session.entities.get(0)).addDestination(X, y);
//go down right

yt=d;

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go right

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go up right

y-=4d;

X +=d;
((User)session.entities.get(0)).addDestination(X, y);
//go up

y-=4d;
((User)session.entities.get(0)).addDestination(X, y);

}+//end barrelRoll

//parses a halt command
//on halt a user will stop at current location and empty out all checkpoints.
public void parseHalt() {

if(userInput.contains("halt")){

parselnfo = "Keyword: [halt]";

((User) session.entities.get(0)).dCount = 0;
}
else if(userInput.contains("stop")){

parselnfo = "Keyword: [halt]";

((User) session.entities.get(0)).dCount = 0;
}
else if(userInput.contains("freeze")){
parselnfo = "Keyword: [halt]";
((User) session.entities.get(0)).dCount = 0;
}
else{
String[] words = userInput.split(" ");
boolean hasVerb = false;
boolean hasDirection = false;
if(words.length ==2){
if(isType(verbList, words[0])){
parselnfo = "[verb][direction]";
if(isType(nounDirList, words[1])){
//((User)session.entities.get(0)).addDestination(x,
y)
//need method to express go in direction until hit
wall.
//IMPLEMENT: see if the move in dir until
method works.
//private String[] nounDirList= { "left", "right",
"forward","forwards", "back", "backwards", "backward" };
int[] xy = new int[2];
if(words[1].contentEquals("forward") ||
words[1].contentEquals("forwards")){

((User)session.entities.get(0)).getFaceMod(xy, 0);

}
else if(words[1].contentEquals("left")){

((User)session.entities.get(0)).getFaceMod(xy, 3);//3 is left
else if(words[1].contentEquals("right")){

((User)session.entities.get(0)).getFaceMod(xy, 1); //1 is left
H

else{

((User)session.entities.get(0)).getFaceMod(xy, 2); //2 is backwards(reverse)
}
this.setMovelnDirUntil(xy[0], xy[1], 9999, 9999);
//keep moving in one direciton , screen will time out move.
}
else if(isType(mapDirList, words[1])){
//private String[] mapDirList= { "up", "down",
"north", "south", "east", "west" };
int xmod, ymod;
xmod = ymod = 0;

if(words[1].contains("south") ||
words[1].contains("down")){
ymod = 1;
h
else if(words[1].contains("north") ||
words[1].contains("up")){
ymod = -1;
h

if(words[1].contains("east")){
xmod = 1;
h

else if(words[1].contains("west")){
xmod = -1;
h

this.setMovelnDirUntil(xmod, ymod, 9999, 9999);
}//end else map dir word
else{

parselnfo = "Invalid structure. Missing Noun";

}//end first word is a verb
else{

parselnfo = "Invalid structure. Missing Verb";
}

+//end if length ==
else{
parselnfo = "Unknown Keywords: " + userInput + ". Possible
incomplete sentence.";

}
}
}//end parse halt

//parse the input string
public void parseString() {

String[] commands = userInput.split(" ");
String[] cparse = new String[commands.length];
int verb = 0;

//commands = detectCommands(); //discontinued due to way it works.

//for each word, detect what type of word it is, then associate to a restriction.
for(int i = 0; 1 < commands.length; i++){
if(isType(stopList, commands|[i])) cparse[i] = "stop";
else if(isType(verbList, commands[i])){ cparse[i] = "verb"; verb++; }
else if(isType(moveCondList, commands][i])) cparse[i] = "mv cnd";

else if(isType(posCondList, commands|[i])) cparse[i] = "pos cnd";
else if(isType(fluffList, commands][i])) cparse[i] = "";
else if(isType(nounDirList, commands[i])) cparse[i] = "n dir";
else if(isType(mapDirList, commands[i])) cparse[i] = "m dir";
else if(isType(treeList, commands][i])) cparse[i] = "tree n";
else if(isType(fountainList, commands[i])) cparse[i] = "fountain n";
else if(isType(catList, commands[i])) cparse[i] = "cat n";
else if(isType(lightList, commands[i])) cparse[i] = "light n";
else if(isType(buildingList, commands[i])) cparse[i] = "building n";
else cparse[i] = "unknown";
}//end for each word

//get my counts

int donts = 0;

int stops = 0;

int verbs = 0;

int directionOf = 0;

int movelnDir = 0;

int[] nouns = new int[20];
int nounpos = 0;

//strip down the in line duplicates.
//lexample: go[v] walk[V] to the tree[n] => [v] [n]
for(int i = 0; 1 < cparse.length; i++){

//singleton checks
if(cparse[i].contentEquals("mv cnd")){donts++;}
else if(cparse[i].contentEquals("stops")) {stops++;}
else if(cparse[i].contentEquals("verb")) {verbs++;}
else if((nounpos < 20) &&
(cparse[i].contentEquals("tree n")
|| cparse[i].contentEquals("fountain n")
|| cparse[i].contentEquals("cat n")
|| cparse[i].contentEquals("light n")
|| cparse[i].contentEquals("building n"))){
nouns[nounpos] = i;
nounpos+-+;
}
//duplicates
if(i>1){
if(cparse[i].contentEquals("mv cnd")){

if(i <cparse.length -1){
if(!cparse[i+1].contentEquals("mv cnd")){
for(int j =1+ 1; j < cparse.length;j++){
if(cparse[j].contentEquals("tree n")

cparse[j].contentEquals("fountain n")
cparse[j].contentEquals("cat n")
cparse[j].contentEquals("light n")

cparsel[j].contentEquals("building n")){
cparse[j] = "mv cnd loc";

b
j

}//end if there was a mv cmd

if(cparse[i].contentEquals("verb") && cparse]i -
1].contentEquals("verb")) {
cparse[i-1]="";
verbs--;
h
else if(cparse[i].contentEquals("stop") && cparse][i -
1].contentEquals("stop")) {
cparse[i-1]="";
stops--;
h
else if(cparse[i].contentEquals("mv cnd") && cparse[i -
1].contentEquals("mv cnd")) {
cparse[i- 1]="";
donts--;
h
else if(cparse[i].contentEquals("verb") && cparse]i -
1].contentEquals("mv cnd")) {
cparse[i] ="";
verbs--;
h
else if((cparse[i].contentEquals("of"") && cparse[i -1].contentEquals("n
dir"))
I (cparse[i].contentEquals("of") && cparse[i -
1].contentEquals("m dir"))) {
directionOf++;
movelnDir--;
h
else if(cparse[i].contentEquals("n dir") || cparse[i].contentEquals("n
dir")){

movelnDir++;

}//end duplicate reduction

nmn,

parselnfo ="";

//actual parse now
if(verbs > 0){
if(nounpos > 0){

int prevnoun = 0;
boolean match = false;
//for each of the found nouns attempt a parse.
for(int j = 0; j < nounpos; j++){
match = false;
//first noun. get position of that noun reduce by 1.
//so long as it doesn't go before the previous noun or start of
sentence, body code
for(int i = nouns[j] -1 ; 1 >= prevnoun; i--){

//figure out which type of noun this is.

int nounType = 0; //0:user, 1:

if(isType(treeList, commands[nouns[j]])) nounType =
Const.aTree;

if(isType(fountainList, commands[nouns[j]])) nounType
= Const.aFountain;

if(isType(catList, commands[nouns[j]])) nounType =

Const.aCat;

if(isType(lightList, commands[nouns[j]])) nounType =
Const.aLight;

if(isType(buildingList, commands[nouns[j]])) nounType
= Const.aBuilding;

//more types

//get position of that noun.

int destNounX = session.entities.get(nounType).cx;
int destNounY = session.entities.get(nounType).cy;

if(cparse[i].contentEquals("verb")){
//if there are donts. look left then right, stay within
previous noun(or beginning of sentence) and before next verb

if(donts > 0){

this.findMvCnd(cparse, commands,
nouns[j], prevnoun, session.entities.get(0).cx, session.entities.get(0).cy, destNounX, destNounY);

donts--;

//move to the noun without restrictions
((User)session.entities.get(0)).addDestination(destNounX, destNounY);

match = true;
1= prevnoun -1;//out of current noun conditions
detection

if(Const.debug) {
System.out.println("Verb only parse");
System.out.println("User x,y: " +
((User)session.entities.get(0)).cx +"," + ((User)session.entities.get(0)).cy);
System.out.println("Tree x,y: " +
session.entities.get(1).cx +"," + session.entities.get(1).cy);

}

}//found a verb meaning: [verb] [noun]
else if(cparse[i].contentEquals("pos cnd")
|| (cparse[i-1].contentEquals("n dir") &&
(commands[i].contentEquals("of") || commands[i].contentEquals("side")))
|| (cparse[i-1].contentEquals("m dir") &&
(commands[i].contentEquals("of") | commands[i].contentEquals("side")))){
//found an ending position
//modify dest based upon position type
//private String[] posCondList= { "past",
"touch","in", "above", "below", "after", "beyond", "before" };
//private String[] nounDirList= { "left", "infront",
"front", "right", "forward", "forwards", "back", "backwards", "backward" };
//private String[] mapDirList= { "up", "down",
"north", "south", "east", "west", "northeast", "northwest", "southeast", "southwest" };

//in will have no effect since that is the normal
destination
//first up is map position, as it is easiest. Note
north, south, east, west, marked by CONTAINS because it might be northeast or similar
//north
if(commands[i-1].contentEquals("up")
|lcommands][i-1].contains("north") |[commands[i].contentEquals("above") ||commands[i-
1].contentEquals("top")){destNounY -= (Const.objectH/2 + Const.userSize/2);}
//south
else if(commands[i-1].contentEquals("down")
|lcommands][i-1].contains("south") ||commands[i-1].contentEquals("below") ||commands[i-
1].contentEquals("bottom")){destNounY += (Const.objectH/2 + Const.userSize/2);}
//east
if(commands[i-1].contains("east")
){destNounX += (Const.objectW/2 + Const.userSize/2);}
/Iwest

else if(commands|[i-1].contains("west")
){destNounX -= (Const.objectW/2 + Const.userSize/2);}

//relational position based off of the user.

//get it:

int quad =
this.getQuad(((User)session.entities.get(0)).cx, ((User)session.entities.get(0)).cy, destNounX,
destNounY, true);

if(commands[i-1].contentEquals("front")
|lcommands][i-1].contains("infront") ||commands[i].contains("before") ||commands[i-
1].contains("forward") |lcommands][i-1].contains("forwards"))

//if in row column linup
if(quad == 1){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 2){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 3){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 4){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 5){destNounX +=
Const.objectW/2 + Const.userSize/2;}
else if(quad == 6){destNounY -=
Const.objectH/2 + Const.userSize/2;}
else if(quad == 7){destNounX -=
Const.objectW/2 + Const.userSize/2;}
else if(quad == 8){destNounY +=
Const.objectH/2 + Const.userSize/2;}
}
else if(commands[i-1].contentEquals("back")
|lcommands][i-1].contains("backward") |lcommands][i-1].contains("backwards")
|lcommands][i].contains("past") |[commands][i].contains("after")
|lcommands][i].contains("beyond") ||commands[i].contains("behind"))
{
//if in row column linup
if(quad == 1){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 2){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 3){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 4){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 5){destNounX -=
Const.objectW/2 + Const.userSize/2;}

else if(quad == 6){destNounY +=
Const.objectH/2 + Const.userSize/2;}

else if(quad == 7){destNounX +=
Const.objectW/2 + Const.userSize/2;}

else if(quad == 8){destNounY -=
Const.objectH/2 + Const.userSize/2;}

}

else if(commands[i-1].contentEquals("left"))
{
//if in row column linup
if(quad == 1){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 2){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 3){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 4){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 5){destNounY +=
Const.objectH/2 + Const.userSize/2;}
else if(quad == 6){destNounX +=
Const.objectW/2 + Const.userSize/2;}
else if(quad == 7){destNounY -=
Const.objectH/2 + Const.userSize/2;}
else if(quad == 8){destNounX -=
Const.objectW/2 + Const.userSize/2;}

}

else if(commands][i-1].contentEquals("right"))
{
//if in row column linup
if(quad == 1){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 2){destNounX -=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 3){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY += Const.objectH/2 + Const.userSize/2;}
else if(quad == 4){destNounX +=
Const.objectW/2 + Const.userSize/2; destNounY -= Const.objectH/2 + Const.userSize/2;}
else if(quad == 5){destNounY -=
Const.objectH/2 + Const.userSize/2;}
else if(quad == 6){destNounX -=
Const.objectW/2 + Const.userSize/2;}
else if(quad == 7){destNounY +=
Const.objectH/2 + Const.userSize/2;}
else if(quad == 8){destNounX +=
Const.objectW/2 + Const.userSize/2;}

if(donts > 0){
this.findMvCnd(cparse, commands,
nouns[j], prevnoun, session.entities.get(0).cx, session.entities.get(0).cy, destNounX, destNounY);

donts--;

((User)session.entities.get(0)).addDestination(destNounX, destNounY);

directionOf--;
match = true;

1= prevnoun -1;//out of current noun conditions
detection

if(Const.debug) {System.out.println("position
parse"); }
}//found an ending position [verb] [end position] [noun]
else if(cparse[i].contentEquals("n dir") I
cparse[i].contentEquals("m dir")){
//found move in direction until noun
int[] xyMod = new int[2];
boolean nounBlocks = false;
xyMod[0] = xyMod[1] = 0;

//north
if(commands[i].contentEquals("up")
|lcommands][i].contains("north")
|lcommands][i].contentEquals("above")||commands[i].contentEquals("top")){xyMod[1]
=-1;}
//south

else if(commands|[i].contentEquals("down")
|lcommands][i].contains("south")

||commands][i].contentEquals("below")||commands[i].contentEquals("bottom")){xyMod[1]
=1}
//east
if(commands][i].contains("east")
){xyMod[0] = 1}
/Iwest

else if(commands|[i].contains("west")
){xyMod[0] =-1;}

if(commands[i].contentEquals("front")
|lcommands][i].contains("infront") |[commands[i].contains("before")
||commands][i].contains("forward") |[commands[i].contains("forwards"))

{

((User)session.entities.get(0)).getFaceMod(xyMod, 0);
H

else if(commands[i].contentEquals("back")
|lcommands][i].contains("backward") ||commands][i].contains("backwards")
||commands][i].contains("past") |[commands][i].contains("after")
||commands][i].contains("beyond"))

{

((User)session.entities.get(0)).getFaceMod(xyMod, 2);
H

else if(commands[i].contentEquals("left"))

{

((User)session.entities.get(0)).getFaceMod(xyMod, 3);
H

else if(commands[i].contentEquals("right"))

{

((User)session.entities.get(0)).getFaceMod(xyMod, 1);
H

int vertMove = 0;
int horiMove = 0;

//if user x is to left of noun x, it needs to go right
//else it needs to go left
if(
((User)session.entities.get(0)).cx < destNounX){ horiMove = 1;}
else { horiMove = -1;}
//if user y is above noun y, it needs to go down
//else it needs to go up.
if(
((User)session.entities.get(0)).cy < destNounY){ vertMove = 1;}
else { vertMove =-1;}

//if is not going to be stopped by the noun in either
direction...

//put the destination outside of the map

((User) session.entities.get(0)).dCount = 0; //first
clear out the check points because position matters.

if ((horiMove != xyMod[0]) && (vertMove !=
xyMod[1]))

{

destNounX = session.entities.get(0).cx +

(xyMod[0] * 2000);
destNounY = session.entities.get(0).cy +

(xyMod[1] * 2000);

if(donts > 0){

this.findMvCnd(cparse, commands,
nouns[j], prevnoun, session.entities.get(0).cx, session.entities.get(0).cy, destNounX, destNounY);

donts--;

}

this.setMovelnDirUntil(xyMod[0], xyMod[1],
destNounX, destNounY); //destination matters.. becauase it might not be going in that direction.

match = true;
1= prevnoun -1;//out of current noun conditions

detection
if(Const.debug) {System.out.println("direction

parse");}
}//found an ending position [verb] [end position] [noun]

}//end for 1 > previous noun && >=0
if(!match){

parselnfo = "Improper structure";
}

//immediately update prevnoun.
prevnoun = nouns[j];

}+//end for j < nounpos

}//there was a noun

else{
parselnfo = "No nouns detected";
}
}
else{
parselnfo = "No verbs detects. ";
}

for(int i = 0; 1 < cparse.length; i++){
if(cparse[i].length() > 0) {parselnfo = parselnfo + "[" + cparse[i] + "]";}
}

parselnfo = parselnfo + " Press <Enter> to continue.";

}

/**

* Finds the position of the "mv cnd"
%

%

* @return
*/
public int findMvCnd(String[] parse, String[] orig, int start, int end, int ux, int uy, int dx, int
dy){

int retval = -1;
int nval = -1;
boolean foundMatch = false;
int nounX = 0;
int nounY = 0;

//first search to the left
for(int i = start; 1 > end; i--){

if(parse[i].contentEquals("mv cnd")){retval =1; i = end;}
}

//if wasn't found
if(retval == -1){
//go right
for(int i = start + 1; 1 < parse.length; i++){
if(parse[i].contentEquals("mv cnd")) {retval = i; i = parse.length;}
else if(parse[i].contentEquals("verb") || parse[i].contains(" n")){retval =
i; 1 = parse.length;}
}
}
if(Const.debug) { System.out.println("Inside mv cnd find\nRetval: " + retval); }
//if mv cnd was found
if(retval = -1){
//need to find the associated verb
for(int i = retval + 1; 1 < parse.length; i++){
if(parse[i].contentEquals("mv cnd loc")){nval = i;}

}

if(Const.debug) {System.out.println("nval: " + nval);}
if(nval !=-1){
foundMatch = true;
if(this.isType(treeList, orig[nval])){nounX =
session.entities.get(Const.aTree).cx; nounY = session.entities.get(Const.aTree).cy;}
else if(this.isType(fountainList, orig[nval])) {nounX =
session.entities.get(Const.aFountain).cx; nounY = session.entities.get(Const.aFountain).cy;}
else if(this.isType(catList, orig[nval])) {nounX =
session.entities.get(Const.aCat).cx; nounY = session.entities.get(Const.aCat).cy;}
else if(this.isType(lightList, orig[nval])) {nounX =
session.entities.get(Const.aLight).cx; nounY = session.entities.get(Const.aLight).cy;}

else if(this.isType(buildingList, orig[nval])) {nounX =
session.entities.get(Const.aBuilding).cx; nounY = session.entities.get(Const.aBuilding).cy;}

//if(this.isType(treeList, orig[nval])){nounX =
session.entities.get(Const.aTree).cx; nounX = session.entities.get(Const.aTree).cy;}

else{

}

foundMatch = false;

}

//if there was a match
if(foundMatch) {
//create rectangles and lines representing path and obstacle
Rectangle obstacle = new Rectangle(nounX - Const.objectW/2, nounY -
Const.objectH/2, Const.objectW/2, Const.objectH/2);
Line2D.Double leftLine = new Line2D.Double(ux - Const.userSize/2,
uy, dx - Const.userSize/2, dy);
Line2D.Double midLine = new Line2D.Double(ux, uy, dx, dy);
Line2D.Double rightLine = new Line2D.Double(ux + Const.userSize/2,
uy, dx + Const.userSize/2, dy);

boolean lhit, mhit, rhit;

//see if they intersect(meaning collision)
if(leftLine.intersects(obstacle)){lhit = true;}
else{lhit = false;}
if(midLine.intersects(obstacle)) {mhit = true;}
else {mhit = false;}
if(rightLine.intersects(obstacle)) {rhit = true;}
else{rhit = false;}

//if there was a collision

if(lhit || mhit || rhit){
//first figure out where the user is in relation to the obstacle
int quad = this.getQuad(ux, uy, dx, dy, false);

//if quad ==

if(quad == 1){
//both hit. Go around either way
if(!1hit && rhit)
{

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

}

else

{

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

}
}
if(quad == 2){
//both hit. Go around either way
if(!1hit && rhit)
{

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

}

else

{

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

}
}
if(quad == 3){
//both hit. Go around either way
if(!1hit && rhit)
{

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

}

else

{

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,

nounY - Const.objectH/2 - Const.userSize/2);
}
}
if(quad == 4){
//both hit. Go around either way
if(!1hit && rhit)
{

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY + Const.objectH/2 + Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

}

else

{

((User)session.entities.get(0)).addDestination(nounX + Const.objectW/2 + Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

((User)session.entities.get(0)).addDestination(nounX - Const.objectW/2 - Const.userSize/2,
nounY - Const.objectH/2 - Const.userSize/2);

b
b

}+//end if there was a collision
}//end if found match

}//end if mv cnd was found

if(!foundMatch && retval!= -1){parselnfo += "*Unpaired [mv cnd]*";}

return retval;
}//end findMvCnd

/**
%
*Four parameters for two sets of x,y.
*based upon positioning return quad.
*edit: added 4 additional quads to represent column/row linup.
%

* @param x1 reference object

* @param yl
* @param x2
* @param y2
* @return

*/

origin object

public int getQuad(int x1, int y1, int x2, int y2, boolean zone8){
int quad = 0;
char overlap;
if(zone8) {overlap = isColRowOverlap(x1, y1, x2, y2);}
else{overlap ="";}

//if user x is greater than object x. user is right of object
if(x1 > x2){

}

if(overlap == 'x"){quad = 5;} //if right of and overlap

else if(yl > y2){
if(overlap =="y"){quad = 8;} //if right of and below
else{quad =4;}

} //if right of and below

else {
if(overlap =="'y'){quad = 6;} //if right of and below
else{quad = 1;}

} //if right of and below

/lelse if x1 is to left of x2

else {

if(overlap == 'x"){quad = 7;} //if right of and overlap

else if(yl > y2){
if(overlap =="'y'){quad = 8;} //if right of and below
else{quad = 3;}

} //if right of and below

else {
if(overlap =="'y'){quad = 6;} //if right of and below
else{quad = 2;}

} //if right of and below

return quad;
}//end get quad

/**

*Four parameters for two sets of x,y.
*will check if column or row position overlaps
*set 1 assumed to be user, set 2 assumed to be object.

*

*@ return 'x''y' and 'b'(both)

*

*/
public char isColRowOverlap(int x1, int y1, int x2, int y2){
char overlap="";

int dx = Math.abs(x1 - x2);
int dy = Math.abs(y1 - y2);

if(dx < Const.userSize/2 + Const.objectW/2){ overlap ='x"; }
if(dy < Const.userSize/2 + Const.objectH/2){

if(overlap == 'x"){overlap = 'b';}

else{overlap ="y';}

}

return overlap;
}//end get quad

//lused to detect if a word is in a list

//given list and word to check against

public boolean isType(String|[] list, String word){
boolean retval = false;

for(int i = 0; 1 < list.length; i++){
if(word.contentEquals(list[i])){

retval = true;
break;
§
}
return retval;
}//end isType

//detects commands.
//current format:
//count nouns. Will need further exclusion based off of conditional moves.
public String[] detectCommands(){
String[] retval;
String[] words = userInput.split(" ");
int[] commandPoints = new int[1];
int verbs = 0;

for(int i = 0; 1 < words.length; i++){
for(int j = 0; j < verbList.length; j++){
if(words[i].contentEquals(verbList[j])){

verbs++;

if(verbs > commandPoints.length) {
int[] tempA = new int[commandPoints.length * 2];
for(int k = 0; k < commandPoints.length; k++){

tempA[k] = commandPoints[k];

}

commandPoints = tempA;
}//end if verbs
H/end w
}//end j
}//end 1

if(commandPoints.length > 1){

}
//else{

retval = new String[1];
retval[1] = userInput;

return retval;
}//end detect commands.

//counts the number of verbs in a sentence.
public int countVerbs(String sentence){
int retval = 0;

return retval;

}

//counts the number of nouns in a sentence.
public int countNouns(String sentence){
int retval = 0;

return retval;

//calculate direction move until parameter given or screen boundaries reached

//natural limit at screen boundaries.

public void setMovelnDirUntil(int xmod, int ymod, int xdest, int ydest){
int ux, uy;
boolean spotMatch = false;

if(xmod == 0 && ymod == 0){
if(Const.debug) {

System.out.println("Move cancelled due to mods being 0")

}

return; //can't move if there is no mod value.

}

ux = ((User)session.entities.get(0)).cx;
uy = ((User)session.entities.get(0)).cy;

while(!spotMatch) {
if(xdest * xmod == ux || ydest * ymod == uy){
spotMatch = true;
}

else if(Const.wwidth < ux + Const.userSize/2){
ux = Const.wwidth - 1 - Const.userSize/2;
spotMatch =true;

H

else if(0 > ux - Const.userSize/2){
ux = 1 + Const.userSize/2;
spotMatch = true;

§

else if(Const.wheight < uy + Const.userSize/2){
uy = Const.wheight - 1 - Const.userSize/2;
spotMatch = true;

§

else if(0 > uy - Const.userSize/2){
uy = 1 + Const.userSize/2;
spotMatch = true;

b
else{
ux += xmod;
uy += ymod;
b

}//end while no spot match

((User)session.entities.get(0)).addDestination(ux, uy);
}//end set move in dir until

//get string methods

public String getIM(){ return inputMarker;}
public String getPI(){ return parselnfo;}
public String getUI(){ return userInput;}

//get text start area

public int getTextAHS() {return workAreaH;}
//get state

public boolean isPolling() {return gettinglnput;}

}//end class

