
ICS 311: Algorithms Spring 2025

Problem Set 14

Kyle Berney Due: Friday, May 2, 2025 at 4pm

You may discuss the problems with your classmates, however you must write up the solutions on

your own and list the names of every person with whom you discussed each problem.

Start every problem on a separate page, with the exception that Problems 2 can start on the same page
as Problem 1 (Peer credit assignment).

1 Peer Credit Assignment (1 point extra credit for replying)

Please list the names of the other members of your peer group for this week and the number of extra credit
points you think they deserve for their participation in group work.

� You have a total of 60 points to allocate across all of your peers.

� You can distribute the points equally, give them all to one person, or do something in between.

� You need not allocate all the points available to you.

� You cannot allocate any points to yourself! Points allocated to yourself will not be recorded.

2 Verifying Longest Path (40 pts)

A simple path in a graph G is a path that does not visit any vertex more than once. The problem of
�nding the longest simple path asks for the length of the longest simple path in a given graph G. The
decision version of the longest simple path problem asks, given a graph G and an integer k, if there is a
simple path in G that contains at least k edges. Consider the following language Longest-Path = {⟨G, k⟩ :
there is a path in G that contains least k edges}. Show that Longest-Path ∈ NP as follows:

(a) (16 pts) Given an instance (G, k) of a problem that contains a path of length at least k, describe what
the certi�cate would look like.

(b) (16 pts) Give a polynomial-time veri�cation algorithm that would use the above certi�cate to verify
that the instance indeed has a longest simple path.

Now that we know that Longest-Path ∈ NP , there is one more step remaining to prove that the longest
simple path problem is NP-complete.

(c) (8 pts) What would you have to do to prove that the longest simple path problem is NP-complete.
Simply identify what you would have to do, you don't actually have to do it for this homework.

3 Approximation Algorithm for Maximum Matching (60 pts)

Recall that for an undirected graph G, a matching is a set of edges such that no two edges in the set are
incident on the same vertex. Last week we saw how to �nd a maximum matching in a bipartite graph. For
general graphs, i.e., graphs that are not required to be bipartite, the problem of �ndingmaximum matching

can also be solved in polynomial time. In this problem, we will look at the linear time approximation
algorithm for �nding maximum matching in general undirected graphs, which is faster than the best know
exact algorithm.

1

(a) (5 pts) A maximal matching (notice the di�erence in the ending) is a matching, such that no edge
can be added to the graph without violating the matching property. Show that a maximal matching
need not be a maximum matching by showing an undirected graph G and a maximal matching M in
G that is not a maximum matching. (Hint: You can �nd such a graph with only four vertices.)

(b) (15 pts) Consider an undirected graph G = (V,E). Design an O(V +E)-time greedy algorithm to �nd
a maximal matching in G. Write down the pseudocode, explain why it �nds the maximal matching
correctly, and analyze its running time. All three parts must be present to receive any credit.

In the rest of the problem you will show that the greedy algorithm from part (b) is a 2-approximation
of maximum matching.

(c) (10 pts) Show that the size of a maximum matching in G is a lower bound on the size of any vertex
cover for G.

(d) (10 pts) Consider a maximal matchingM inG = (V,E). Let T = {v ∈ V : some edge in M is incident on v}.
What can you say about the subgraph of G induced by the vertices of G that are not in T? (A subgraph
of G = (V,E) induced by a subset of vertices V ′ ⊆ V is subgraph G′ = (V ′, E′) consisting of vertices
V ′ and edges E′ ⊆ E, such that for each edge (u, v) ∈ E′, both u ∈ V ′ and v ∈ V ′.)

(e) (10 pts) Conclude from part (d) that 2|M | is the size of a vertex cover for G.

(f) (10 pts) Using parts (c) and (e), prove that the greedy algorithm in part (b) is a 2-approximation
algorithm for maximum matching.

2

