

Course Review

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

- Propositions
 - Operators
 - Negation (¬)
 - Conjunction (\wedge)
 - Disjunction (\lor)
 - Exclusive Or (\oplus)
 - Conditional Statement (\Rightarrow)
 - Biconditional Statement (⇔)
 - Truth Tables

- Propositions
 - Logical Equivalences
 - Tautology
 - Contradiction
 - Contingency

- Propositions
 - Logical Equivalences
 - De Morgan's Laws
 - Conditional Disjunction
 - Distributive Laws
 - Identity Laws
 - Domination Laws
 - Idempotent Laws
 - Negation Laws
 - Commutative Laws
 - Associative Laws
 - Absorption Laws
 - Conditional and Biconditional Equivalences

- Predicates and Quantifiers
 - Operators
 - Universal Quantifier (\forall)
 - Existential Quantifier (∃)
 - Uniqueness Quantifier $(\exists !)$
 - De Morgan's Laws

Proofs

- Proof Methods
 - Direct Proof
 - Proof by Contraposition
 - Proof by Contradiction
 - Proof by Induction
 - Vacuous Proof
 - Trivial Proof
 - Proof by Cases

- Set membership (\in)
- Empty set (Ø)
- Defining a set
 - Demonstrate a pattern (using ... to extrapolate the pattern)
 - Set builder notation
- Subsets and supersets
 - Proper subset/superset (⊂)
 - Subset/superset (⊆)
- Power Sets (\mathcal{P})
- Disjoint Sets

- Notable Sets
 - Natural numbers, $\mathbb N$
 - Integers, $\mathbb Z$
 - Positive integers, \mathbb{Z}^+
 - Negative integers, \mathbb{Z}^-
 - Rational numbers, Q
 - Real numbers, ${\mathbb R}$
 - Positive real numbers, \mathbb{R}^+
 - Negative real numbers, \mathbb{R}^-
 - Complex numbers, ${\mathbb C}$

- Operators
 - Cartesian Product (×)
 - Union (∪)
 - Intersection (\cap)
 - Set difference (-)
 - Complement (\overline{A})

- Set identities
 - De Morgan's Laws
 - Distributive Laws
 - Identity Laws
 - Domination Laws
 - Idempotent Laws
 - Complementation Laws
 - Complement Laws
 - Commutative Laws
 - Associative Laws
 - Absorption Laws

- Set equality
 - 1. Subset method
 - 2. Membership table
 - 3. Apply set identities
- Cardinality
 - Countable
 - Uncountable

Functions

- Let $f : A \rightarrow B$, such that f(a) = b
- Terminology:
 - A is the domain
 - *B* is the codomain
 - *b* is the image of *a*
 - *a* is the preimage of *b*
 - Range of f is the set of all images of $a \in A$

Functions

- Injective (one-to-one)
- Surjective (onto)
- Bijection (one-to-one mapping)
- Notable functions:
 - Identity function, ι
 - Inverse function, f^{-1}
 - Floor function, $\lfloor n \rfloor$
 - Ceiling function, $\lceil n \rfloor$
 - Factorial, n!
 - Exponential, bⁿ
 - Logarithm, log_b a

Sequences

- Finite sequences
- Infinite sequences
- Notable sequences:
 - Geometric progression
 - Arithmetic progression
 - Strings
 - Fibonacci sequence
- Recurrence relations

Summations

- Notable summations:
 - Arithmetic series
 - Sum of squares
 - Sum of cubes
 - Geometric series
 - Harmonic series
 - Telescoping series
- Product of terms in a sequence
 - Telescoping series

Matrices

- Matrix Operations
 - Addition / Subtraction
 - Multiplication
 - Powers of square matrices
 - Transpose
- Identity matrix

Algorithms

- Pseudocode
- Searching algorithms
 - Linear search
 - Binary search
- Sorting algorithms
 - Bubble sort
 - Insertion sort
 - Merge sort
- String matching
- Optimization problems
 - Greedy algorithms

Algorithms

- Asymptotic analysis
 - Big O, *O*
 - Big Omega, Ω
 - Theta, Θ
 - Little o, o
 - Little omega, ω
- Analyzing iterative algorithms via summations
- Proof of correctness
 - Loop invariants
 - Proof by induction

Number Theory

- Divisibility
 - Division algorithm
- Modular Arithmetic
 - Residue classes
 - Reduced residue
- Representation of integers
 - Decimal (base 10)
 - Binary (base 2)
 - Octal (base 8)
 - Hexadecimal (base 16)

Number Theory

- Greatest common divisor (GCD)
 - Euclidean algorithm
 - Extended Euclidean algorithm
- Least common multiple (LCM)
- Primes and Composite integers
 - Linear combinations
 - Fundamental Theorem of Arithmetic
 - Trial division
 - Primality testing
 - Prime factorization

Number Theory

- Linear congruences
- Inverse modulo m
- Systems of linear congruences
 - Chinese Remainder Theorem
- Cryptography (Not covered on final exam)
 - Caesar cipher
 - Affine cipher
 - Transposition cipher
 - RSA cryptosystem

Counting

- Product rule
- Sum rule
- Subtraction rule
 - Inclusion-exclusion principle
- Division rule
- Pigeonhole principle
- Permutations
- Combinations
- Binomial Coefficients
 - Binomial Theorem
 - Pascal's Triangle

Probability

- Finite probability
- Probability distribution
 - Uniform distribution
- Conditional probability
 - Bayes' Theorem
- Independence
 - Pairwise independence
 - Mutual independence
- Bernoulli trials

Probability

- Random Variables
 - Indicator random variables
 - Expected value
 - Linearity of expectations
 - Variance