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Random Variables

s Recall: A random variable is a mapping from the sample
space of an experiment to the set of real numbers

s Let X be a random variable
= The probability that X takes the value r € IR is denoted as
Pr(X =r)
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Expected Value

s Definition 1: The expected value of the random variable X on
the sample space S, denoted E[X], is equal to

E[X] = Z Pr(s)X(s)

seS
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Expected Value

s Ex: Let X be a random variable defined as the number that
comes up when a fair die is rolled. What is the expected
value of X?
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Expected Value

s Ex: Let X be a random variable defined as the number that
comes up when a fair die is rolled. What is the expected

value of X?

s Solution: The random variable X can take the values 1, 2, 3,
4, 5, or 6, each with probability 1/6. It follows that

1 1 1 1

2+ —--3+—=--4+—--5+—--6
6 6 6 6 6
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Expected Value

s EX: Let X be a random variable defined as the total number
of heads when a fair coin is flipped three times. What is the
expected value of X?
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Expected Value

s EX: Let X be a random variable defined as the total number
of heads when a fair coin is flipped three times. What is the

expected value of X?
s Solution: The random variable X can take the values 0, 1, 2,

or 3. Since there are 8 total possible outcomes, each
outcome has a probability of 1/8. It follows that

E[X] = %(X(HHH) + X(HHT) + X(HTH) + X(HTT)

+ X(THH) + X(THT) + X(TTH) + X(TTT))

’
=—B8+2+2+1+2+1+1+0)
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Expected Value

= When an experiment has relatively few outcomes, we can
compute the expected value of a random variable directly
from its definition by enumerating all of its outcomes

s However, when there a large number of outcomes, we rely on
the following result

s Theorem 1: Let X be a random variable where Pr(X =r) is
the probability that X takes the value of r.
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Expected Value

s Ex: What is the expected value of the sum of the numbers
that appear when a pair of fair dice are rolled?
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Expected Value

s Solution: Let X be a random variable defined as the sum of
the numbers that appear when a pair of dice are rolled.
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Expected Value

s Solution: Hence,
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Expected Value

s Solution: Therefore,

12
E[X]=) r-Pr(X=r)
r=2

1 2 3 4 S 6
=2-—+3:-—+4- —+5- —+6:- —+7- —
36 36 36 36 36 36

5 4 3 2 1
+8: —+9- —+10- ——+11- —-+12- —
36 36 36 36 36

252
- 36
=7
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Expected Value

s Wait... we said that we could rely on Theorem 1 so that we
do not have to enumerate all possible outcomes
= However in the previous example, in order to calculate

Pr(X=r)forr=2,3,...,12, we had to enumerate all
possible outcomes!

= Indicator random variables and linearity of expectations allow

us to simplify calculations
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Indicator Random Variables

s Definition 2: Given a sample space S and an event A, the
iIndicator random variable [, associated with the event A is
defined as

(

1 iIf Aoccurs

0 if Adoes not occur

\
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Indicator Random Variables

s Definition 2: Given a sample space S and an event A, the
iIndicator random variable [, associated with the event A is
defined as

(

1 If Aoccurs
4 = <

0 if Adoes not occur

\

s Ex: Suppose that we flip a fair coin. Let Xy be an indicator
random variable associated with the coin coming up heads.

(

1 if H occurs

Xy = <

O if T occurs

\
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Indicator Random Variables

s Definition 2: Given a sample space S and an event A, the
iIndicator random variable [, associated with the event A is
defined as

(

1 If Aoccurs
4 = <

0 if Adoes not occur

\

s Ex: Suppose that we roll a fair die. Let X; be an indicator
random variable associated with the roll resulting in /, for
i=1,2,...,6.

(

1 if /i is rolled

\O otherwise
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Expected Value

s Lemma 1: Let /4 be an indicator random variable associated
with the event A.

Ella] = Pr(A)

Kyle Berney — Ch 7.4: Expected Value and Variance



Expected Value

s Lemma 1: Let /4 be an indicator random variable associated
with the event A.

Ella] = Pr(A)

= Proof: By definittion of an indicator random variable and the
definition of the expected value, we have

E[l4] = 1 - Pr(A) + 0 - Pr(A)
- Pr(A)
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Linearity of Expectations

= Theorem 2: (Linearity of Expectations) Fori=1,2,...,n, let
X; be a random variable and let a and b be real numbers.

1. E [X i Xi| = iy ELX]
2. E[aX + b] = aE[X]+ b
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Linearity of Expectations

= Proof: (1.)
_et n be an arbitrary positive integer.

nductive Hypothesis: Assume inductively that for all integers
k, such that 0 < k < n, P(k) is true. In other words,

[k ] K
E D Xi| =) EIX
| i=1 j=1

Base Case: Assume n= 1.
Trivially, we have

1
E | = E[Xi]=) E[X]
| i=1
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Linearity of Expectations

= Proof: (1.)
Inductive Case: Assume n > 1.
By definition of the expected value, it follows that

E zn:X,- = (Pr(s) - )
L=t |
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Linearity of Expectations

= Proof: (1.)
Inductive Case: Assume n > 1.
Since 0 < n— 1 < n, from our inductive hypothesis we know

that

E

Therefore,

n—1
E | D Xi| +E[X:] = (Z E[x,-]) + E[X,]

=1

=) E[X]
i=1
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Linearity of Expectations

= Proof: (2.)
By definition of the expected value, it follows that

E[aX + b] = Z Pr(s)(aX(s) + b)

SES

_ 3 (Z Pr(s)X(s)) + bz Pr(s)

seS seS

= aE[X]+b, since Y Pr(s)=1
seS
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Expected Value

s Ex: What is the expected value of the sum of the numbers
that appear when a pair of fair dice are rolled?
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Expected Value

s Solution: Fori=1,2,...,6, let X; be an indicator random
variable such that

(

1 ifiis rolled
Xi = <

\O otherwise

Let Y; be a random variable such that

6
Yi=) i-X
j=1

In other words, Y; represents the outcome of the first die.

Kyle Berney — Ch 7.4: Expected Value and Variance



Expected Value

s Solution:
Similarly, let Y> be a random variable that represents the
outcome of the second die.

Lastly, let Z = Y7 + Y5 be a random variable defined as the
sum of the numbers that appears when a pair of fair dice are
rolled.
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Expected Value

s Solution:
Thus, using linearity of expectations

E[Z] = E[Y1 + Y?]
= E[Y1] + E[Y2]

6
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Expected Value

s Solution:
Since all X;’s are indicator random variables,
E[X]=Pr(X;=1)=1/6

6

6
ZZI-E[X,-]=ZZI-%
=1 =1
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Expected Value

s Ex:Let A[1...n]be an array of nintegers. If i < j and

All]l > A[j], then the pair (/, ) is called an inversion of A (i.e.,
they are out of order with respect to each other). Suppose
that the elements of A form a uniform random permutation of
the elements {1,2,...,n}. What is the expected number of

inversions?
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Expected Value

= Solution: For i < J, let X;; be an indicator random variable
associated with the event that A[/] > A[/] (i.e., they are
inverted). Since the n elements of A are a uniform random
permutation, we have that

1
Pr(Xij=1) = 7

In other words, it is equally likely that A[/] > A[j] or A[i] < A[j]
(there are an equal number of permutations such that A[/]
preceeds A[j] and A[j] preceeds A[/]).

Hence,

E[Xi;] =
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Expected Value

= Solution:
Let X be a random variable denoting the total number of
inverted pairs in the array A. In other words, X is the sum of
all X;; that meet the constraintthat1 </ <j <n.

n—1 n
X=2_ 2%

=1 j=i+1
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Expected Value

= Solution:
Using linearity of expectations, we have

n—1
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Expected Value

= Solution:
Using linearity of expectations, we have

1
22.2.1=5.

i=1 j=i+1 =1

n—1

;(ZZ)

/= |=

= % (n(n— 1) — n(n2— 1))

nn—1)
4
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Independent Random Variables

s Definition 3: The random variables X and Y on a sample
space S are independent if

PriX=rnand Y =r)=Pr(X =nr)Pr(Y =n)
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Independent Random Variables

s Recall: From Slide 12, we considered the problem of rolling
two fair dice and asked what is the expected value.

= Let Yy be a random variable that represents the outcome
of the first die

= Let Y> be a random variable that represents the outcome
of the second die

s Question: Are Y; and Y5 independent?
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Independent Random Variables

= Solution: Let S={1,2,3,4,5,6} and let i,j € S. Since each
of the 36 possible outcomes are equally likely, we have that
1
36
Furthermore, each of the 6 outcomes on each die are equally
likely

Pr(Y; = iand Ys = j) =

Pr(Y; = i) =

Hence,

Therefore, Y; and Y, are independent random variables.
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Independent Random Variables

s Theorem 3: If X and Y are independent random variables on
a sample space S, then

E[XY] = E[X]E[Y]
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Independent Random Variables

s Theorem 3: If X and Y are independent random variables on
a sample space S, then

E[XY] = E[X]E[Y]

s Proof: See textbook for a proof.
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Variance

s Expected value of a random variable tells us its “average”

value
Variance of a random variable measures how widely a
random variable is distributed about its expected value

Definition 4: Let X be a random variable on a sample space
S. The variance of X, denoted V[X], is

VIX] =) (X(s) — E[X])*Pr(s)

SES

In other words, V[X] is the weighted average of the square of

the deviation of X
The standard deviation of X, denoted o(X), is defined as

VVIX]
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Variance

s Theorem 4: If X is a random variable on a sample space S,
then

VIX] = E[X?] — E[X]?
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Variance

s Proof:

VIX] = > (X(s) — E[X])*Pr(s)

SES

- Z(XZ( ) — 2X(S)E[X] + E[X]*)Pr(s)
seS

- (Z X2(S)Pr(s)) — (2E[X]ZX(S)Pr(S)>

SES

+ (E[X]2 > Pr(s))

seS
= E[X?] — 2E[X]E[X] + E[X]?
= E[X?] — E[X]

SES
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Variance

s Corollary 1: If X is a random variable on a sample space S
and E[X] = u, then

VIX] = E[(X — W)°]
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Variance

s Corollary 1: If X is a random variable on a sample space S
and E[X] = u, then

VIX] = E[(X — W)°]

s Proof:
E[(X — w)?] = E[X® — 2Xp + n°]

| — 2uE[X] + p?

| —2p® + p

Kyle Berney — Ch 7.4: Expected Value and Variance



Variance

s Ex: Let X be a random variable that defined as the number
that comes up when a fair die is rolled. What is the variance
of X?
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Variance

s Ex: Let X be a random variable that defined as the number
that comes up when a fair die is rolled. What is the variance
of X?

= Solution: From a previous example, we know that
E[X] = 7/2. To find E[X?], note that X? takes the values i
fori=1,2,...6, each with probability 1/6. Hence,

91

6

E[X?] = (12 +2° + 3% + 4° + 5° + 6°) =

Therefore,

’
6

V[X] = E[X?] — E[X]
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Bienyamé’s Formula

= Theorem 5: (Bienyamé’s Formula) If X and Y are
independent random variables on a sample space S, then
VIX + Y] = V[X]+ V][Y]
Furthermore, fori =1,2,..., n, if X;’'s are pairwise
independent random variables on S, then

n

=1

v ZX =) VIX]
| i=1
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Bienyamé’s Formula

s Proof: It follows from Theorem 4 that
VIX + Y] = E[(X + Y)?] — E[X + Y]?
= E[X? + 2XY + Y?] — (E[X] + E[Y])?
= E[X?] + 2E[X Y] + E[Y?]
— (E[X]? + 2E[X]E[Y] + E[Y]?)
= E[X?] + 2E[X Y] + E[Y?]
— E[X]? — 2E[X]E[Y] — E[YY

Kyle Berney — Ch 7.4: Expected Value and Variance



Bienyamé’s Formula

s Proof:
Since X and Y are independent, from Theorem 3 we have
that E[XY] = E[X]E[Y]. Therefore,

|+ 2E[XY] + E[Y?] — E[X]? — 2E[X]E[Y] — E[Y]*
| + 2E[X]E[Y] + E[Y?] — E[X]? — 2E[X]E[Y] — E[Y]?
| — E[XT? + E[Y?] — E[YT

=Mm+vw]

The proof for the n pairwise independent random variables
can be performed by generalizing this proof and using
mathematical induction. (Try it yourself! See Exercise 33 in
the textbook.)
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Chebyshev’s Inequality

= How likely is it that a random variable takes a value far from
its expected value?

s Theorem 6: (Chebyshev’s Inequality) Let X be a random
variable on a sample space S. If r is a positive real number,

then
VIX]
r2

Pr(|X(s) — EIX]| > r) <
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