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Random Variables

Recall: A random variable is a mapping from the sample
space of an experiment to the set of real numbers

Let X be a random variable
The probability that X takes the value r ∈ R is denoted as
Pr(X = r )
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Expected Value

Definition 1: The expected value of the random variable X on
the sample space S, denoted E [X ], is equal to

E [X ] =
∑
s∈S

Pr(s)X (s)
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Expected Value

Ex: Let X be a random variable defined as the number that
comes up when a fair die is rolled. What is the expected
value of X?
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Expected Value

Ex: Let X be a random variable defined as the number that
comes up when a fair die is rolled. What is the expected
value of X?

Solution: The random variable X can take the values 1, 2, 3,
4, 5, or 6, each with probability 1/6. It follows that

E [X ] =
1
6
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 4 +

1
6
· 5 +

1
6
· 6

=
21
6

=
7
2
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Expected Value

Ex: Let X be a random variable defined as the total number
of heads when a fair coin is flipped three times. What is the
expected value of X?
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Expected Value

Ex: Let X be a random variable defined as the total number
of heads when a fair coin is flipped three times. What is the
expected value of X?

Solution: The random variable X can take the values 0, 1, 2,
or 3. Since there are 8 total possible outcomes, each
outcome has a probability of 1/8. It follows that

E [X ] =
1
8

(X (HHH) + X (HHT ) + X (HTH) + X (HTT )

+ X (THH) + X (THT ) + X (TTH) + X (TTT ))

=
1
8

(3 + 2 + 2 + 1 + 2 + 1 + 1 + 0)

=
12
8

=
3
2
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Expected Value

When an experiment has relatively few outcomes, we can
compute the expected value of a random variable directly
from its definition by enumerating all of its outcomes
However, when there a large number of outcomes, we rely on
the following result

Theorem 1: Let X be a random variable where Pr(X = r ) is
the probability that X takes the value of r .

E [X ] =
∑

r∈X (S)

r · Pr(X = r )
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Expected Value

Ex: What is the expected value of the sum of the numbers
that appear when a pair of fair dice are rolled?
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Expected Value

Solution: Let X be a random variable defined as the sum of
the numbers that appear when a pair of dice are rolled.

X = 2 ⇒ {(1, 1)}
X = 3 ⇒ {(1, 2), (2, 1)}
X = 4 ⇒ {(1, 3), (2, 2), (3, 1)}
X = 5 ⇒ {(1, 4), (2, 3), (3, 2), (4, 1)}
X = 6 ⇒ {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
X = 7 ⇒ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
X = 8 ⇒ {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
X = 9 ⇒ {(3, 6), (4, 5), (5, 4), (6, 3)}
X = 10 ⇒ {(4, 6), (5, 5), (6, 4)}
X = 11 ⇒ {(5, 6), (6, 5)}
X = 12 ⇒ {(6, 6)}



Kyle Berney – Ch 7.4: Expected Value and Variance 7 - 3

Expected Value

Solution: Hence,

Pr(X = 2) = 1/36
Pr(X = 3) = 2/36
Pr(X = 4) = 3/36
Pr(X = 5) = 4/36
Pr(X = 6) = 5/36
Pr(X = 7) = 6/36
Pr(X = 8) = 5/36
Pr(X = 9) = 4/36
Pr(X = 10) = 3/36
Pr(X = 11) = 2/36
Pr(X = 12) = 1/36
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Expected Value

Solution: Therefore,

E [X ] =
12∑
r=2

r · Pr(X = r )

= 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ 5 · 4
36

+ 6 · 5
36

+ 7 · 6
36

+ 8 · 5
36

+ 9 · 4
36

+ 10 · 3
36

+ 11 · 2
36

+ 12 · 1
36

=
252
36

= 7
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Expected Value

Wait... we said that we could rely on Theorem 1 so that we
do not have to enumerate all possible outcomes
However in the previous example, in order to calculate
Pr(X = r ) for r = 2, 3, . . . , 12, we had to enumerate all
possible outcomes!

Indicator random variables and linearity of expectations allow
us to simplify calculations
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Indicator Random Variables

Definition 2: Given a sample space S and an event A, the
indicator random variable IA associated with the event A is
defined as

IA =

{
1 if A occurs

0 if A does not occur
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Indicator Random Variables

Definition 2: Given a sample space S and an event A, the
indicator random variable IA associated with the event A is
defined as

IA =

{
1 if A occurs

0 if A does not occur

Ex: Suppose that we flip a fair coin. Let XH be an indicator
random variable associated with the coin coming up heads.

XH =

{
1 if H occurs

0 if T occurs
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Indicator Random Variables

Definition 2: Given a sample space S and an event A, the
indicator random variable IA associated with the event A is
defined as

IA =

{
1 if A occurs

0 if A does not occur

Ex: Suppose that we roll a fair die. Let Xi be an indicator
random variable associated with the roll resulting in i , for
i = 1, 2, . . . , 6.

Xi =

{
1 if i is rolled

0 otherwise
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Expected Value

Lemma 1: Let IA be an indicator random variable associated
with the event A.

E [IA] = Pr(A)
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Expected Value

Lemma 1: Let IA be an indicator random variable associated
with the event A.

E [IA] = Pr(A)

Proof: By definittion of an indicator random variable and the
definition of the expected value, we have

E [IA] = 1 · Pr(A) + 0 · Pr(A)

= Pr(A)
■
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Linearity of Expectations

Theorem 2: (Linearity of Expectations) For i = 1, 2, . . . , n, let
Xi be a random variable and let a and b be real numbers.

1. E
[∑n

i=1 Xi
]

=
∑n

i=1 E [Xi ]
2. E [aX + b] = aE [X ] + b
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Linearity of Expectations

Proof: (1.)
Let n be an arbitrary positive integer.

Inductive Hypothesis: Assume inductively that for all integers
k , such that 0 < k < n, P(k ) is true. In other words,

E

[
k∑

i=1

Xi

]
=

k∑
i=1

E [Xi ]

Base Case: Assume n = 1.
Trivially, we have

E

[
1∑

i=1

Xi

]
= E [X1] =

1∑
i=1

E [Xi ]
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Linearity of Expectations

Proof: (1.)
Inductive Case: Assume n > 1.
By definition of the expected value, it follows that

E

[
n∑

i=1

Xi

]
=
∑
s∈S

(
Pr(s)

n∑
i=1

Xi (s)

)

=
∑
s∈S

Pr(s)

((
n−1∑
i=1

Xi (s)

)
+ Xn(s)

)

=
∑
s∈S

(
Pr(s)

n−1∑
i=1

Xi (s)

)
+
∑
s∈S

Pr(s)Xn(s)

= E

[
n−1∑
i=1

Xi

]
+ E [Xn]
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Linearity of Expectations

Proof: (1.)
Inductive Case: Assume n > 1.
Since 0 < n − 1 < n, from our inductive hypothesis we know
that

E

[
n−1∑
i=1

Xi

]
=

n−1∑
i=1

E [Xi ]

Therefore,

E

[
n−1∑
i=1

Xi

]
+ E [Xn] =

(
n−1∑
i=1

E [Xi ]

)
+ E [Xn]

=
n∑

i=1

E [Xi ]

■
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Linearity of Expectations

Proof: (2.)
By definition of the expected value, it follows that

E [aX + b] =
∑
s∈S

Pr(s)(aX (s) + b)

= a

(∑
s∈S

Pr(s)X (s)

)
+ b
∑
s∈S

Pr(s)

= aE [X ] + b, since
∑
s∈S

Pr(s) = 1

■
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Expected Value

Ex: What is the expected value of the sum of the numbers
that appear when a pair of fair dice are rolled?
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Expected Value

Solution: For i = 1, 2, . . . , 6, let Xi be an indicator random
variable such that

Xi =

{
1 if i is rolled

0 otherwise

Let Y1 be a random variable such that

Y1 =
6∑

i=1

i · Xi

In other words, Y1 represents the outcome of the first die.
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Expected Value

Solution:
Similarly, let Y2 be a random variable that represents the
outcome of the second die.

Y2 =
6∑

i=1

i · Xi

Lastly, let Z = Y1 + Y2 be a random variable defined as the
sum of the numbers that appears when a pair of fair dice are
rolled.
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Expected Value

Solution:
Thus, using linearity of expectations

E [Z ] = E [Y1 + Y2]

= E [Y1] + E [Y2]

= E

[
6∑

i=1

i · Xi

]
+ E

[
6∑

i=1

i · Xi

]

=

(
6∑

i=1

i · E [Xi ]

)
+

(
6∑

i=1

i · E [Xi ]

)

= 2
6∑

i=1

i · E [Xi ]
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Expected Value

Solution:
Since all Xi ’s are indicator random variables,
E [Xi ] = Pr(Xi = 1) = 1/6

2
6∑

i=1

i · E [Xi ] = 2
6∑

i=1

i · 1
6

=
1
3

6∑
i=1

i

=
21
3

= 7
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Expected Value

Ex: Let A[1 . . . n] be an array of n integers. If i < j and
A[i ] > A[j ], then the pair (i , j) is called an inversion of A (i.e.,
they are out of order with respect to each other). Suppose
that the elements of A form a uniform random permutation of
the elements {1, 2, . . . , n}. What is the expected number of
inversions?
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Expected Value

Solution: For i < j , let Xi ,j be an indicator random variable
associated with the event that A[i ] > A[j ] (i.e., they are
inverted). Since the n elements of A are a uniform random
permutation, we have that

Pr(Xi ,j = 1) =
1
2

In other words, it is equally likely that A[i ] > A[j ] or A[i ] < A[j ]
(there are an equal number of permutations such that A[i ]
preceeds A[j ] and A[j ] preceeds A[i ]).
Hence,

E [Xi ,j ] =
1
2
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Expected Value

Solution:
Let X be a random variable denoting the total number of
inverted pairs in the array A. In other words, X is the sum of
all Xi ,j that meet the constraint that 1 ≤ i < j ≤ n.

X =
n−1∑
i=1

n∑
j=i+1

Xi ,j
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Expected Value

Solution:
Using linearity of expectations, we have

E [X ] = E

n−1∑
i=1

n∑
j=i+1

Xi ,j


=

n−1∑
i=1

n∑
j=i+1

E [Xi ,j ]

=
n−1∑
i=1

n∑
j=i+1

1
2
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Expected Value

Solution:
Using linearity of expectations, we have

1
2

n−1∑
i=1

n∑
j=i+1

1 =
1
2

n−1∑
i=1

(n − i)

=
1
2

(
n−1∑
i=1

n −
n−1∑
i=1

i

)

=
1
2

(
n(n − 1) − n(n − 1)

2

)
=

n(n − 1)
4
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Independent Random Variables

Definition 3: The random variables X and Y on a sample
space S are independent if

Pr(X = r1 and Y = r2) = Pr(X = r1)Pr(Y = r2)
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Independent Random Variables
Recall: From Slide 12, we considered the problem of rolling
two fair dice and asked what is the expected value.

Let Y1 be a random variable that represents the outcome
of the first die
Let Y2 be a random variable that represents the outcome
of the second die

Question: Are Y1 and Y2 independent?
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Independent Random Variables

Solution: Let S = {1, 2, 3, 4, 5, 6} and let i , j ∈ S. Since each
of the 36 possible outcomes are equally likely, we have that

Pr(Y1 = i and Y2 = j) =
1
36

Furthermore, each of the 6 outcomes on each die are equally
likely

Pr(Y1 = i) = Pr(Y2 = j) =
1
6

Hence,

Pr(Y1 = i and Y2 = j) =
1
36

=
1
6
· 1

6
= Pr(Y1 = i)Pr(Y2 = j)

Therefore, Y1 and Y2 are independent random variables.
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Independent Random Variables

Theorem 3: If X and Y are independent random variables on
a sample space S, then

E [XY ] = E [X ]E [Y ]
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Independent Random Variables

Theorem 3: If X and Y are independent random variables on
a sample space S, then

E [XY ] = E [X ]E [Y ]

Proof: See textbook for a proof.
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Variance

Expected value of a random variable tells us its “average”
value
Variance of a random variable measures how widely a
random variable is distributed about its expected value

Definition 4: Let X be a random variable on a sample space
S. The variance of X , denoted V [X ], is

V [X ] =
∑
s∈S

(X (s) − E [X ])2Pr(s)

In other words, V [X ] is the weighted average of the square of
the deviation of X
The standard deviation of X , denoted σ(X ), is defined as√

V [X ]
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Variance

Theorem 4: If X is a random variable on a sample space S,
then

V [X ] = E [X 2] − E [X ]2
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Variance

Proof:
V [X ] =

∑
s∈S

(X (s) − E [X ])2Pr(s)

=
∑
s∈S

(X 2(s) − 2X (s)E [X ] + E [X ]2)Pr(s)

=

(∑
s∈S

X 2(s)Pr(s)

)
−

(
2E [X ]

∑
s∈S

X (s)Pr(s)

)

+

(
E [X ]2

∑
s∈S

Pr(s)

)
= E [X 2] − 2E [X ]E [X ] + E [X ]2

= E [X 2] − E [X ]2 ■
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Variance

Corollary 1: If X is a random variable on a sample space S
and E [X ] = µ, then

V [X ] = E [(X − µ)2]
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Variance

Corollary 1: If X is a random variable on a sample space S
and E [X ] = µ, then

V [X ] = E [(X − µ)2]

Proof:
E [(X − µ)2] = E [X 2 − 2Xµ + µ2]

= E [X 2] − 2µE [X ] + µ2

= E [X 2] − 2µ2 + µ2

= E [X 2] − µ2

= E [X 2] − E [X ]2

= V [X ]
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Variance

Ex: Let X be a random variable that defined as the number
that comes up when a fair die is rolled. What is the variance
of X?
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Variance

Ex: Let X be a random variable that defined as the number
that comes up when a fair die is rolled. What is the variance
of X?

Solution: From a previous example, we know that
E [X ] = 7/2. To find E [X 2], note that X 2 takes the values i2

for i = 1, 2, . . . 6, each with probability 1/6. Hence,

E [X 2] =
1
6

(12 + 22 + 32 + 42 + 52 + 62) =
91
6

Therefore,
V [X ] = E [X 2] − E [X ]

=
91
6

−
(

7
2

)2

=
35
12
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Bienyamé’s Formula

Theorem 5: (Bienyamé’s Formula) If X and Y are
independent random variables on a sample space S, then

V [X + Y ] = V [X ] + V [Y ]

Furthermore, for i = 1, 2, . . . , n, if Xi ’s are pairwise
independent random variables on S, then

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ]
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Bienyamé’s Formula

Proof: It follows from Theorem 4 that

V [X + Y ] = E [(X + Y )2] − E [X + Y ]2

= E [X 2 + 2XY + Y 2] − (E [X ] + E [Y ])2

= E [X 2] + 2E [XY ] + E [Y 2]

− (E [X ]2 + 2E [X ]E [Y ] + E [Y ]2)

= E [X 2] + 2E [XY ] + E [Y 2]

− E [X ]2 − 2E [X ]E [Y ] − E [Y ]2
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Bienyamé’s Formula

Proof:
Since X and Y are independent, from Theorem 3 we have
that E [XY ] = E [X ]E [Y ]. Therefore,

E [X 2] + 2E [XY ] + E [Y 2] − E [X ]2 − 2E [X ]E [Y ] − E [Y ]2

=E [X 2] + 2E [X ]E [Y ] + E [Y 2] − E [X ]2 − 2E [X ]E [Y ] − E [Y ]2

=E [X 2] − E [X ]2 + E [Y 2] − E [Y ]2

=V [X ] + V [Y ]

The proof for the n pairwise independent random variables
can be performed by generalizing this proof and using
mathematical induction. (Try it yourself! See Exercise 33 in
the textbook.)
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Chebyshev’s Inequality

How likely is it that a random variable takes a value far from
its expected value?

Pr(|X (s) − E [X ]| ≥ r ) ≤ V [X ]
r2

Theorem 6: (Chebyshev’s Inequality) Let X be a random
variable on a sample space S. If r is a positive real number,
then


