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Assigning Probabilities

Let S be a sample space of an experiment with a finite or
countable number of outcomes
Assign a probability Pr(s) to each outcome s
There are two requirements:

1. 0 ≤ Pr(s) ≤ 1 for each s ∈ S
2.
∑

s∈S Pr(s) = 1

The function Pr from the set of all outcomes s ∈ S is called a
probability distribution
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Assigning Probabilities

Ex: What probabilities should we assign to the outcomes
heads (H) and tails (T ) when a fair coin is flipped?
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Assigning Probabilities

Ex: What probabilities should we assign to the outcomes
heads (H) and tails (T ) when a fair coin is flipped?

Solution: For a fair coin, the probability of heads and tails are
equal. Since there are only two possible outcomes, the
probability must be 1/2 each, that is, Pr(H) = Pr(T ) = 1/2.
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Assigning Probabilities

Ex: What probabilities should we assign to the outcomes
heads (H) and tails (T ) when a coin a biased so that heads
comes up twice as often as tails?



Kyle Berney – Ch 7.2: Probability Theory 4 - 2

Assigning Probabilities

Ex: What probabilities should we assign to the outcomes
heads (H) and tails (T ) when a coin a biased so that heads
comes up twice as often as tails?

Solution: For a biased coin we have that

Pr(H) = 2Pr(T )
and

Pr(H) + Pr(T ) = 1

Hence,

2Pr(T ) + Pr(H) = 3Pr(T ) = 1

and we can conclude that Pr(T ) = 1/3 and Pr(H) = 2/3.
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Assigning Probabilities

Definition 1: Let S be a set with n elements. The
uniform distribution assigns the probability 1/n to each
element of S.

Definition 2: The probability of the event E is the sum of the
probabilities of the outcomes in E .

Pr(E) =
∑
s∈E

Pr(s)

(Note that when E is an infinite set, the above summation is a
convergent infinite series.)
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Assigning Probabilities

Ex: Suppose that a die is biased (or loaded) so that 3
appears twice as often as each other number, but the other
five outcomes are equally likely. What is the probability that
an odd number appears when we roll this die?
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Assigning Probabilities

Ex: Suppose that a die is biased (or loaded) so that 3
appears twice as often as each other number, but the other
five outcomes are equally likely. What is the probability that
an odd number appears when we roll this die?

Solution: Since 3 appears twice as likely, we have that

Pr(1) = Pr(2) = Pr(4) = Pr(5) = Pr(6) = 1/7
and

Pr(3) = 2/7

Hence, the probability of the event E = {1, 3, 5} is

Pr(E) = Pr(1) + Pr(3) + Pr(5) = 1/7 + 2/7 + 1/7 = 4/7 .
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Probabilities of Complements

Recall from Chapter 7.1 that the probability of the
complement E is

Pr(E) = 1 − Pr(E)

This equality holds when using Definition 2, since∑
s∈S

Pr(s) = 1 = Pr(E) + Pr(E)
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Probabilities of Unions

Recall from Chapter 7.1 that the probability of the union of
two events E1 and E2 is

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2)

Notice that if E1 and E2 are disjoint, then E1 ∩ E2 = ∅ and

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2)

We generalize this observation in the following Theorem
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Probabilities of Unions

Theorem 1: If E1, E2, . . . is a sequence of pairwise disjoint
events in a sample space S, then

Pr

(⋃
i

Ei

)
=
∑

i

Pr(Ei )
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Probabilities of Unions

Theorem 1: If E1, E2, . . . is a sequence of pairwise disjoint
events in a sample space S, then

Pr

(⋃
i

Ei

)
=
∑

i

Pr(Ei )

Proof: Try it yourself! (In the textbook, this is Exercise 36 and
37.)
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Conditional Probability

Ex: A fair coin is flipped three times and the first flip comes
up tails. What is the probability that an odd number of tails
appears?
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Conditional Probability

Ex: A fair coin is flipped three times and the first flip comes
up tails. What is the probability that an odd number of tails
appears?

Solution: There are four possible outcomes:

T , T , T
T , T , H

T , H, T
T , H, H

An odd number of tails appears only for 2 out of the 4
possible outcomes. Since each of the outcomes are equally
likely, the probability is 2/4 = 1/2.
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Conditional Probability

Let E and F be events with Pr(F ) > 0
Definition 3: The conditional probability of E given F ,
denoted Pr(E | F ), is defined as

Pr(E | F ) =
Pr(E ∩ F )

Pr(F )
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Conditional Probability

Ex: A fair coin is flipped three times and the first flip comes
up tails. What is the probability that an odd number of tails
appears?
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Conditional Probability

Solution: Let E be the event that an odd number of tails
occurs and F be the event that the first flip is tails. We have
that

E = {HHT , HTH, THH, TTT}
F = {THH, THT , TTH, TTT}

Hence, Pr(F ) = 4/8 = 1/2 and Pr(E ∩ F ) = 2/8 = 1/4.
Therefore,

and E ∩ F = {THH, TTT}

Pr(E | F ) =
Pr(E ∩ F )

Pr(F )

=
1/4
1/2

=
1
4
· 2

1
=

1
2
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Conditional Probability

Ex: A bit string of length four is generated with a uniform
random distribution. What is the probability that the bit string
contains at least two consecutive 0’s, given that we know that
the most significant bit is a 0?
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Conditional Probability

Solution: Let E be the event that a bit string of length four
contains at least two consecutive 0’s and F be the event that
the most significant bit is a 0. We have that

E = {0000, 0001, 0010, 0011, 0100, 1000, 1001, 1100}
F = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111}

Since there are 24 = 16 total bit strings of length four,
Pr(F ) = 8/16 = 1/2 and Pr(E ∩ F ) = 5/16. Therefore,

and E ∩ F = {0000, 0001, 0010, 0011, 0100}

Pr(E | F ) =
Pr(E ∩ F )

Pr(F )

=
5/16
1/2

=
5
16

· 2
1

=
10
16

=
5
8
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Independence

Recall: (Slide 11) a previously considered example where a
fair coin is flipped three times

E is the event that an odd number of tails occurs
F is the event that the first flip is tails

We found that:

Pr(E) = 4/8 = 1/2
Pr(E | F ) = 1/2

In other words, the probability that E occurs is exactly the
same as the probability that E occurs given F also occurs

We say that E and F are independent events
The occurence of one of the events gives no information
about the probability that the other event occurs
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Independence

Pr(E) = Pr(E | F )

=
Pr(E ∩ F )

Pr(F )

⇒ Pr(E ∩ F ) = Pr(E)Pr(F )

Definition 4: The events E and F are independent if and only
if Pr(E ∩ F ) = Pr(E)Pr(F ).
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Independence

Ex: Let E be the event that a randomly generated bit string of
length four begins with a 1 and F be the event that a bit string
of length four contains an even number of 1’s. Are E and F
independent if each of the 24 = 16 bit strings of length four
are equally likely?
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Independence

Solution:

E = {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}
F = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}

and E ∩ F = {1001, 1010, 1100, 1111}
Hence,

Pr(E) = Pr(F ) = 8/16 = 1/2

Pr(E ∩ F ) = 4/16 = 1/4

and Pr(E ∩ F ) =
1
4

=
1
2
· 1

2
= Pr(E)Pr(F )

Therefore, E and F are independent.
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Pairwise and Mutual Independence

Definition 5: The events E1, E2, . . . , En are pairwise
independent if and only if

Pr(Ei ∩ Ej ) = Pr(Ei )Pr(Ej )

for all pairs of integers i and j such that 1 ≤ i < j ≤ n.

Definition 6: These n events are mutually independent if

Pr(Ei1 ∩ Ei2 ∩ . . . ∩ Eik ) = Pr(Ei1 )Pr(Ei2 ) . . .Pr(Eik )

for all integers k such that 2 ≤ k ≤ n and
1 ≤ i1 < i2 < . . . < ik ≤ n.
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Pairwise and Mutual Independence

Remark:

Every set of n mutually independent events is also
pairwise independent
However n pairwise independent events are not
necessarily mutually independent
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Bernoulli Trials and the Binomial Distribution

Every outcome of an experiment with two possible outcomes
is called a Bernoulli trial

Generally, an outcome is either a success or a failure
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Bernoulli Trials and the Binomial Distribution

Ex: A coin is biased so that the probability of heads is 2/3.
What is the probability that exactly four heads come up when
the coin is flipped seven times, assuming the flips are
independent?
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Bernoulli Trials and the Binomial Distribution

Ex: A coin is biased so that the probability of heads is 2/3.
What is the probability that exactly four heads come up when
the coin is flipped seven times, assuming the flips are
independent?

Solution: There are 27 = 128 possible outcomes when a coin
is flipped seven times. The number of ways that four of the
flips results in heads is the number of 4-combinations out of 7
items. Since each of the flips are independent, the probability
of four heads and three tails is (2/3)4(1/3)3. Therefore, the
probability that exactly four heads occurs is(

7
4

)
(2/3)4(1/3)3 =

35 · 16
37 =

560
2187
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Bernoulli Trials and the Binomial Distribution

Theorem 2: The probability of exactly k successes in n
independent Bernoulli trials, with probability of success p and
probability of failure q = 1 − p, is(

n
k

)
pk qn−k
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Bernoulli Trials and the Binomial Distribution

Theorem 2: The probability of exactly k successes in n
independent Bernoulli trials, with probability of success p and
probability of failure q = 1 − p, is(

n
k

)
pk qn−k

Proof: The number of ways to have k successes out of n
experiments is equal to the number of k -combinations from n
total objects. Since each of the n trials are independent, the
probability of exactly k successes and n − k failures is
pk qn−k . Therefore, the probability of exactly k successes is(

n
k

)
pk qn−k

■
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Bernoulli Trials and the Binomial Distribution

We denote the probability of k successes in n independent
Bernoulli trials with probability of success p and probability of
failure q = 1 − p as b(k ; n, p)

This function is called the binomial distribution
From Theorem 2,

b(k ; n, p) =
(

n
k

)
pk qn−k
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Random Variables

Many problems are concerned with a numerical value
associated with the outcome of an experiment

Ex: What is the number of times tails occurs when a coin
is flipped 20 times?

Definition: A random variable is a mapping from the sample
space of an experiment to the set of real numbers

In other words, a random variable assigns a real number
to each possible outcome
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Random Variables

Ex: Suppose that a coin is flipped three times. Let X be a
random variable that equals the number of heads appears.

X (HHH) = 3
X (HHT ) = 2
X (HTH) = 2
X (HTT ) = 1

X (THH) = 2
X (THT ) = 1
X (TTH) = 1
X (TTT ) = 0
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Random Variables

Let Pr(X = r ) be the probability that X takes the value r

Definition: The distribution of a random variable X on a
sample space S is the set of pairs (r , Pr(X = r )).
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Random Variables

Ex: Suppose that a coin is flipped three times. Let X be a
random variable that equals the number of heads appears.

X (HHH) = 3
X (HHT ) = 2
X (HTH) = 2
X (HTT ) = 1

X (THH) = 2
X (THT ) = 1
X (TTH) = 1
X (TTT ) = 0
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Random Variables

Ex: Suppose that a coin is flipped three times. Let X be a
random variable that equals the number of heads appears.

X (HHH) = 3
X (HHT ) = 2
X (HTH) = 2
X (HTT ) = 1

X (THH) = 2
X (THT ) = 1
X (TTH) = 1
X (TTT ) = 0

Hence, the distribution of X is
(0, 1/8), (1, 3/8), (2, 3/8), (3, 1/8)
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Random Variables

We’ll continue studying random variables in Chapter 7.4

Indicator random variables
Expected value
Variance

Random variables are fundamental to the analysis of
randomized algorithms

ICS 311: Algorithms
Ex: Randomized Quicksort
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The Birthday Problem

Famous puzzle with a surprising answer

The Birthday Problem: What is the minimum number of
people who need to be in the same room so that the
probability that at least two of them have the same birthday is
greater than 1/2?
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The Birthday Problem

Solution:
Assumptions:

Birthdays of the people in the room are independent
Each birthday is equally likely
365 days in a year
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The Birthday Problem

Solution: Let pn be the probability that n people all have
different birthdays.

p1 = 1

p2 =
364
365

p3 =
364
365

· 363
365

p4 =
364
365

· 363
365

· 362
365

...

pn =
364
365

· 363
365

· . . . · 365 − (n − 1)
365
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The Birthday Problem

Solution: It follows that the probability that out of n people,
there are at least two people with the same birthday is

1 − pn = 1 − 364
365

· 363
365

· . . . 365 − (n − 1)
365

We compute 1 − pn manually (i.e., since we are computer
scientists, we instead write a Python script) and find that

1 − p22 ≈ 0.4756

1 − p23 ≈ 0.5072

Therefore, the minimum number of people needed so that
the probability that at least two people have the same
birthday is greater than 1/2 is 23.
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The Birthday Problem

1 − p60 ≈ 0.9941


