

Ch 6.4: Binomial Coefficients and Identities

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

Recall: The number of r-combinations from a set of n elements is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

which is the binomial coefficient

 Called the binomial coefficient because these numbers occur as coefficients in the expansion of powers of binomial expressions

$$(x + y)^n$$

• Theorem 1: (Pascal's Identity) Let n and k be positive integers, such that $k \le n$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

• Theorem 1: (Pascal's Identity) Let n and k be positive integers, such that $k \le n$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-1-(k-1)!} + \frac{(n-1)!}{k!(n-1-k)!}$$
$$= \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!}$$

• Theorem 1: (Pascal's Identity) Let n and k be positive integers, such that $k \le n$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

$$= \frac{(n-1)!}{(k-1)!(n-k)(n-k-1)!} + \frac{(n-1)!}{k(k-1)!(n-k-1)!}$$

$$= \left(\frac{1}{n-k}\right) \left(\frac{(n-1)!}{(k-1)!(n-k-1)!}\right)$$

$$+ \left(\frac{1}{k}\right) \left(\frac{(n-1)!}{(k-1)!(n-k-1)!}\right)$$

• Theorem 1: (Pascal's Identity) Let n and k be positive integers, such that $k \le n$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

$$= \left(\frac{1}{n-k} + \frac{1}{k}\right) \left(\frac{(n-1)!}{(k-1)!(n-k-1)!}\right)$$

$$= \left(\frac{k}{k(n-k)} + \frac{n-k}{k(n-k)}\right) \left(\frac{(n-1)!}{(k-1)!(n-k-1)!}\right)$$

$$= \left(\frac{n}{k(n-k)}\right) \left(\frac{(n-1)!}{(k-1)!(n-k-1)!}\right)$$

• Theorem 1: (Pascal's Identity) Let n and k be positive integers, such that $k \le n$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

$$= \frac{n(n-1)!}{k(k-1)!(n-k)(n-k-1)!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

■ Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

■ Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof: Let n be an arbitrary non-negative integer. Inductive Hypothesis: Assume inductively that for all integers \overline{k} , such that $0 \le k < n$, P(k) is true. In other words,

$$(x + y)^k = {k \choose 0} x^k + {k \choose 1} x^{k-1} y + \dots + {k \choose k-1} x y^{k-1} + {k \choose k} y^k$$

• Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof:

Base Case: Assume n = 0.

$$(x+y)^0 = 1 = {0 \choose 0} y^0 = {n \choose n} y^n$$

■ Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof:

Inductive Case: Assume n > 0.

$$(x + y)^n = (x + y)(x + y)^{n-1}$$

Since $0 \le n - 1 < n$, from our inductive hypothesis we know that

$$(x+y)^{n-1} = {\binom{n-1}{0}} x^{n-1} + {\binom{n-1}{1}} x^{n-2} y + \dots$$
$$+ {\binom{n-1}{n-2}} x y^{n-2} + {\binom{n-1}{n-1}} y^{n-1}$$

• Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof: Hence,

$$(x+y)^{n} = (x+y)(x+y)^{n-1}$$

$$= (x+y)\left(\binom{n-1}{0}x^{n-1} + \binom{n-1}{1}x^{n-2}y + \dots + \binom{n-1}{n-1}y^{n-1}\right)$$

$$= \left(\binom{n-1}{0}x^{n} + \binom{n-1}{1}x^{n-1}y + \dots + \binom{n-1}{n-1}xy^{n-1}\right)$$

$$+ \left(\binom{n-1}{0}x^{n-1}y + \binom{n-1}{1}x^{n-2}y^{2} + \dots + \binom{n-1}{n-1}y^{n}\right)$$

• Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof:

$$= x^{n} + x^{n-1}y \left(\binom{n-1}{0} + \binom{n-1}{1} \right) + x^{n-2}y^{2} \left(\binom{n-1}{1} + \binom{n-1}{2} \right) + \dots + xy^{n-1} \left(\binom{n-1}{n-2} + \binom{n-1}{n-1} \right) + y^{n}$$

■ Theorem 2: (Binomial Theorem) Let $x, y \in \mathbb{R}$ and let n be a non-negative integer.

$$(x + y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$

Proof: It follows from Theorem 1 (Pascal's Identity) that

$$= x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + y^{n}$$

$$= \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$$

Corollary 1: Let n be a non-negative integer.

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n-1} + \binom{n}{n}$$

Corollary 1: Let n be a non-negative integer.

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n-1} + \binom{n}{n}$$

Proof: Let n be an arbitrary non-negative integer. It follows from Theorem 1, that for x = 1 and y = 1

$$2^{n} = (1+1)^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n}$$

Corollary 2: Let n be a positive integer.

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0$$

Corollary 2: Let n be a positive integer.

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0$$

• Proof: Let n be an arbitrary positive integer. It follows from Theorem 1 that for x = -1 and y = 1 that

$$0 = 0^{n} = ((-1) + 1)^{n} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} 1^{n-k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k}$$

Corollary 3: Let n be a non-negative integer.

$$\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n$$

Corollary 3: Let n be a non-negative integer.

$$\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n$$

• Proof: Let n be an arbitrary non-negative integer. It follows from Theorem 1 that for x = 1 and y = 2 that

$$3^{n} = (1+2)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 2^{k} = \sum_{k=0}^{n} {n \choose k} 2^{k}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix}$$

$$(x + y)^2 = x^2 + 2xy + y^2$$

• Theorem 3: (Vandermonde's Identity) Let m, n, and r be non-negative integers with $r \le m$ and $r \le n$.

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

• Theorem 3: (Vandermonde's Identity) Let m, n, and r be non-negative integers with $r \le m$ and $r \le n$.

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

■ Proof: Let m, n, and r be arbitrary non-negative integers such that $r \le m$ and $r \le n$. Suppose there are two sets where one set has m items and the second set has n items. Then the number of ways to pick r elements from the union of the sets is

 $\binom{m+n}{r}$

• Theorem 3: (Vandermonde's Identity) Let m, n, and r be non-negative integers with $r \le m$ and $r \le n$.

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

Proof:

Another way to pick r elements from the union of the two sets is to pick k elements from the set containing n elements and (r - k) elements from the set containing m elements. Hence, from the product and sum rule we obtain a total of

$$\sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

• Theorem 3: (Vandermonde's Identity) Let m, n, and r be non-negative integers with $r \le m$ and $r \le n$.

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

Proof:

As both of these two expressions represent the number of ways to pick *r* elements from the union of a set with *m* elements and a set with *n* elements, they are equal to each other.

Corollary 4: Let n be a non-negative integer.

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$

Corollary 4: Let n be a non-negative integer.

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$

• Proof: Let n be an arbitrary non-negative integer. We use Vandermonde's identity with m = r = n to obtain

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{n-k} \binom{n}{k}$$

Since $\binom{n}{k} = \binom{n}{n-k}$, it follows that the above expression is equivalent to $\sum_{k=0}^{n} \binom{n}{k}^{2}$

• Theorem 4: Let n and r be non-negative integers such that $r \le n$.

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

• Theorem 4: Let n and r be non-negative integers such that r < n.

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

• Proof: Let n and r be arbitrary non-negative integers such that $r \le n$. The number of bitstrings of length (n + 1) containing (r + 1) 1's is

 $\binom{n+1}{r+1}$

Kyle Berney - Ch 6.4: Binomial Coefficients and Identities

• Theorem 4: Let n and r be non-negative integers such that $r \le n$.

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

Proof:

The last 1 in this bitstring must occur at position (r + 1) or (r + 2) or ... or (n + 1). Moreover, if the last 1 in the bitstring is in position k then there must be r 1's in the first (k - 1) positions. The number of bitstrings of length (k - 1) with r 1's is

$$\binom{k-1}{r}$$

Theorem 4: Let n and r be non-negative integers such that r < n.

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

Proof:

Using the sum rule for each of the possible positions of the last 1 in the bitstring of length (n + 1), we obtain

$$\sum_{k=r+1}^{n+1} \binom{k-1}{r} = \binom{r}{r} + \binom{r+1}{r} + \ldots + \binom{n}{r} = \sum_{j=r}^{n} \binom{j}{r}$$

Theorem 4: Let n and r be non-negative integers such that r < n.

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

Proof:

Since both of these expressions count the number of bitstrings of length (n + 1) containing (r + 1) 1's, they are equivalent.