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Binomial Coefficients

s Recall: The number of r-combinations from a set of n

elements is
n n!
r) ri(n—r)

which is the binomial coefficient

s Called the binomial coefficient because these numbers occur

as coefficients in the expansion of powers of binomial
expressions

(x+y)"
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Pascal’s Identity

s Theorem 1: (Pascal’s Identity) Let n and k be positive
integers, such that k < n.

) )- ()
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Pascal’s Identity

s Theorem 1: (Pascal’s Identity) Let n and k be positive
integers, such that k < n.

) )- ()

s Proof: Let nand k be arbitrary positive integers, such that
k < n.

(n—1)! (n—1)!

k—(n—1—(k—1) " kKi(n—1— k)|
(n—1)!

K1 K\(n— k
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Pascal’s Identity

s Theorem 1: (Pascal’s Identity) Let n and k be positive
integers, such that k < n.

) )- ()

s Proof: Let nand k be arbitrary positive integers, such that
k < n.

(n— 1)! (n— 1)!
k—Dn—K(n—k—1) " k(k—1)l(n—k—1)

1 (n—1)!
n— k) ((k— Hi(n— k — 1)!>
(n—1)!
) ((k— Hli(n— k — 1)!)
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Pascal’s Identity

s Theorem 1: (Pascal’s Identity) Let n and k be positive
integers, such that k < n.

) )- ()

s Proof: Let nand k be arbitrary positive integers, such that
k < n.

k — 1)!(n—l.<— 1)!)
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Pascal’s Identity

s Theorem 1: (Pascal’s Identity) Let n and k be positive
integers, such that k < n.

) )- ()

s Proof: Let nand k be arbitrary positive integers, such that
k < n.

n(n—1)!
k(k —1){(n— Kk)(n— Kk —1)!
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n

= Proof: Let n be an arbitrary non-negative integer.
Inductive Hypothesis: Assume inductively that for all integers

k, such that 0 < k < n, P(k) is true. In other words,

(X+y)k = <g>xk+ (?)xk_1y+...+ (kf 1>xyk_1 + (Z)yk
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n

s Proof:
Base Case: Assume n = 0.

(x+y) =1=
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(X +y)" = M x s (" X"y s+ 4 xy" 1+ 4 y"
0 1 n—1 n

s Proof:
Inductive Case: Assume n > 0.

n—1

(x+y)" = (x+y)x+y)
Since 0 < n— 1 < n, from our inductive hypothesis we know

that B B
(x +y)"™ (n 1)x”1+(n 1)x’”’2y+...
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n

s Proof: Hence,
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n

s Proof:

ey (7) (7)) oo (0
e (D)4 (1))
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Binomial Theorem

= Theorem 2: (Binomial Theorem) Let x, ¥y € R and let nbe a
non-negative integer.

(x +y)" = Mxn s (" X"y v+ & xy" 14 5 y"
0 1 n—1 n

s Proof: It follows from Theorem 1 (Pascal’s Identity) that

>x”_1y+ <g>x”_2y2+...+ (nﬁ 1)xy”_1 +y"
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Binomial Coefficients

= Corollary 1: Let n be a non-negative integer.

)+ 0)

(7))
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Binomial Coefficients

= Corollary 1: Let n be a non-negative integer.

= () () (3) e+ (" )+ ()

s Proof: Let n be an arbitrary non-negative integer.
It follows from Theorem 1, thatfor x =1 and y = 1

2"=(1+1>”=<g>+(,17>+<g>+
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Binomial Coefficients

= Corollary 2: Let n be a positive integer.
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Binomial Coefficients

= Corollary 2: Let n be a positive integer.

k=0

s Proof: Let n be an arbitrary positive integer.
It follows from Theorem 1 that for x = —1 and y = 1 that
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Binomial Coefficients

= Corollary 3: Let n be a non-negative integer.

S

k=0
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Binomial Coefficients

= Corollary 3: Let n be a non-negative integer.

S

k=0

= Proof: Let n be an arbitrary non-negative integer.
It follows from Theorem 1 that for x = 1 and y = 2 that

37 = (1 +2)" = zn: (:) 1Nkl =y <Z>2"

k=0 k=0
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Pascal’s Triangle

(5)
(o) (1)
() () G) By Pascal's identity:
@O G  O(O=C s s
(5) (1) G) G) G) L4 64
() () G)G) G)6G) L5 1001005
() (1) (2) (6) (2) () ) XN XL VE

ODOOOOOOO IR
) (D) G) G) () G) €) G () |8 28 56 0 56 2 8 1
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Pascal’s Triangle
(o)
() (1)
(3) (%) (3) By Pascal's identity:
) (1) G) G) () +($)=() TR
(5) (1) () (5) (2) L4 6 4
) () G) G GG Los 10 1005
) () ) () (¢ ) ( ) (6) XN XL VE

ODOOOOOOO IR
) (D) G) G) () G) €) G () |8 28 56 0 56 2 8 1

(x+y)2=x2+2xy+y2
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Pascal’s Triangle
(5)
() ()
(3) (%) (3) By Pascal's identity:
) () G) G) (5)+(5)=() R
(5) () G) () (@) L4 6 4
() () ) G) () 6) L5 100105
()()()()()()() XN XL VE

ODOOOOOOO IR
) (D) G) G) () G) €) G () |8 28 56 0 56 2 8 1

(X +y)° = x> +3x°y + 3xy° + y°
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Pascal’s Triangle
(5)
() ()
(3) (%) (3) By Pascal's identity:
) () G) G) (5)+(5)=() R
(5) () G) () (@) L4 6 4
() () ) G) () 6) L5 100105
()()()()()()() XN XL VE

ODOOOOOOO IR
) (D) G) G) () G) €) G () |8 28 56 0 56 2 8 1

(X + ) = x* + 4%y + 6x°y° + 4xy® + y*
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Vandermone’s ldentity

= Theorem 3: (Vandermonde’s Identity) Let m, n, and r be
non-negative integers with r < mand r < n.

(") ()0
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Vandermone’s ldentity

= Theorem 3: (Vandermonde’s Identity) Let m, n, and r be
non-negative integers with r < mand r < n.

(") ()0

= Proof: Let m, n, and r be arbitrary non-negative integers such
that r < mand r < n. Suppose there are two sets where one
set has m items and the second set has n items. Then the
number of ways to pick r elements from the union of the sets

'S (")
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Vandermone’s ldentity

= Theorem 3: (Vandermonde’s Identity) Let m, n, and r be
non-negative integers with r < mand r < n.

(") ()0

s Proof:

Another way to pick r elements from the union of the two sets
IS to pick k elements from the set containing n elements and
(r — k) elements from the set containing m elements. Hence,
from the product and sum rule we obtain a total of

(7))
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Vandermone’s ldentity

= Theorem 3: (Vandermonde’s Identity) Let m, n, and r be
non-negative integers with r < mand r < n.

(") ()0

s Proof:

As both of these two expressions represent the number of
ways to pick r elements from the union of a set with m
elements and a set with n elements, they are equal to each

other. n
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Binomial Coefficients

= Corollary 4: Let n be a non-negative integer.

<2n
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Binomial Coefficients

= Corollary 4: Let n be a non-negative integer.

<2n
n
k=0
s Proof: Let n be an arbitrary non-negative integer.
We use Vandermonde’s identity with m = r = n to obtain

G200

Since (1) = (,”,), it follows that the above expression is

equivalent to
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Binomial Coefficients

s Theorem 4: Let nand r be non-negative integers such that

r <n. .
n+1 J
<r+1 _Z(r>

J=r
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Binomial Coefficients

s Theorem 4: Let nand r be non-negative integers such that

r <n. .
n+ 1 J
<r+1 _Z(r>

J=r

s Proof: Let nand r be arbitrary non-negative integers such
that r < n. The number of bitstrings of length (n + 1)

containing (r +1) 1'sis

n+1
r+ 1
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Binomial Coefficients

s Theorem 4: Let nand r be non-negative integers such that

r <n. .
n+1 J
<r+1 _Z(r>

J=r

s Proof:
The last 1 in this bitstring must occur at position (r + 1) or

(r+2)or...or (n+1). Moreover, if the last 1 in the bitstring is
In position k then there must be r 1's in the first (k — 1)
positions. The number of bitstrings of length (k — 1) with r 1’s

)
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Binomial Coefficients

s Theorem 4: Let nand r be non-negative integers such that

r <n. .
n+1 J
<r+1 _Z(r>

J=r

s Proof:
Using the sum rule for each of the possible positions of the

last 1 in the bitstring of length (n + 1), we obtain

j=r
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Binomial Coefficients

s Theorem 4: Let nand r be non-negative integers such that

r <n. .
n+1 J
<r+1 _Z(r>

J=r

s Proof:
Since both of these expressions count the number of

bitstrings of length (n + 1) containing (r + 1) 1’s, they are
equivalent.
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