) INFORMATION & COMPUTER SCIENCES
UNIVERSITY of HAWAI'T at MANOA

Ch 5.5: Program Correctness

ICS 141: Discrete Mathematics for Computer Science |

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

Kyle Berney — Ch 5.5: Program Correctness




Program Verification

s Experimental approach:

= Test the algorithm with sample input
= Check whether it produces the correct output

s For many problems, it is not feasible nor realistic to test all
possible inputs to the algorithm

s Ex: Sorting n elements

= n!total inputs

» 210 = 1024 elements

» 2101 = 5.42 x 10%°% total input sequences

= For comparison, the estimated number of atoms in the
observable universe is 10%2

Kyle Berney — Ch 5.5: Program Correctness



Proof of Correctness

s [heoretical approach:
= Provide a proof of correctness

1. lterative algorithms:
= Loop Invariants
2. Recursive algorithms:
= Mathematical Induction

= A recursive algorithm may also include loops

= Correctness of loops are proved using loop invariants
= Overall recursive algorithm are proved using mathematical
iInduction

Kyle Berney — Ch 5.5: Program Correctness



Loop Invariants

= Definition: A loop invariant is a formal property that is
(claimed to be) true at the start of each iteration of a loop.

s Must show three things about a loop invariant:

1. Initialization: It is true prior to the first iteration

2. Maintenance: If it is true before a given iteration, then it
remains true before the next iteration

3. Termination: When the loop terminates, the invariant gives
us a useful property that helps show that the algorithm is

correct

Kyle Berney — Ch 5.5: Program Correctness



Loop Invariants

s Must show three things about a loop invariant:

1. Initialization: It is true prior to the first iteration

2. Maintenance: If it is true before a given iteration, then it
remains true before the next iteration

3. Termination: When the loop terminates, the invariant gives
us a useful property that helps show that the algorithm is

correct

s Remark: Notice the similarity to mathematical induction

s |nitialization ~ Base case
s Maintenance =~ Inductive case
= Unlike induction, loop invariants have a termination

condition

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Insertion Sort

INSERTIONSORT(A[1...n])
for j=2 to n
key = A[j]
// Insert A[j] into the sorted sequence A[1...] — 1]
f=j—1
while / > 0 and A[i] > key
Ali + 1] = A[/]
f=i—1
Ali +1] = key

s Loop Invariant:

= At the start of each iteration of the for loop, the subarray
A[1...J — 1] consists of the elements originally in
Al1...J— 1], but in sorted order.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Insertion Sort

s Loop Invariant:
= At the start of each iteration of the for loop, the subarray
A[1...J — 1] consists of the elements originally in
Al1...j— 1], but in sorted order.

s |nitialization:
= Prior to the first iteration, j = 2.

= The subarray A[1.../—1]=A[1...1] = A[1]is a single
element.
= Trivially, A[1] is sorted.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Insertion Sort

s Loop Invariant:

= At the start of each iteration of the for loop, the subarray
A[1...J — 1] consists of the elements originally in
Al1...j— 1], but in sorted order.

s Maintenance:

= Prior to the j-th iteration, we know that our loop invariant is

true, i.e., the subarray A[1...j — 1] is sorted

In the body of the for loop, the elements

Alj — 1], A — 2], A]j — 3], etc. are shifted by one position
to the right, until it finds the correct position for A[j].
Then, it inserts A[j] into this position.

Therefore, at the start of the (j + 1)-th iteration, the
subarray A[1... ] is sorted.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Insertion Sort

s Loop Invariant:

= At the start of each iteration of the for loop, the subarray
A[1...J — 1] consists of the elements originally in
Al1...j— 1], but in sorted order.

s Remark: Formally, another loop invariant is needed for the
while loop, inside of the body of the for loop

= For simplicity of exposition, we presented an informal
argument in the maintenance step

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Insertion Sort

s Loop Invariant:

= At the start of each iteration of the for loop, the subarray
A[1...J — 1] consists of the elements originally in
Al1...j— 1], but in sorted order.

® [ermination:

= The for loop terminates when j=n+1.
= Therefore, A[1...j— 1] = A[1...n] consists of the
elements originally in A[1 ... n], but in sorted order.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Recursive Factorial

FACTORIAL(N)
if n==0
return 1
return n- FACTORIAL(N — 1)

= Proposition: For all non-negative integers n, FACTORIAL(N)
correctly returns the value of n!.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Recursive Factorial

= Proposition: For all non-negative integers n, FACTORIAL(N)
correctly returns the value of n!.

= Proof: Let n be an arbitrary non-negative integer.
Inductive Hypothesis: Assume inductively that for all integers
k, such that 0 < k < n, P(k) is true. In other words,
FACTORIAL(k) correctly returns the value of k!.

Base Case: Assume n = 0.
We know that 0! = 1, hence, FACTORIAL(O) correctly returns
1.

Kyle Berney — Ch 5.5: Program Correctness



Correctness of Recursive Factorial

= Proposition: For all non-negative integers n, FACTORIAL(N)
correctly returns the value of n!.

Proof:

nductive Case: Assume n > 0.

—rom our inductive hypothesis, we know that for

0 < n—1< n, FACTORIAL(n — 1) correctly returns the value

of (n — 1)l. Therefore, FACTORIAL(n) correctly returns

n- FACTORIAL(N—1)=n-(n—1)!

=n!.

Kyle Berney — Ch 5.5: Program Correctness



