
Kyle Berney – Ch 5.5: Program Correctness 1

Ch 5.5: Program Correctness

KYLE BERNEY

DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

ICS 141: Discrete Mathematics for Computer Science I



Kyle Berney – Ch 5.5: Program Correctness 2

Program Verification

Experimental approach:

Test the algorithm with sample input
Check whether it produces the correct output

For many problems, it is not feasible nor realistic to test all
possible inputs to the algorithm

Ex: Sorting n elements

n! total inputs
210 = 1024 elements
210! ≈ 5.42 × 102639 total input sequences
For comparison, the estimated number of atoms in the
observable universe is 1082



Kyle Berney – Ch 5.5: Program Correctness 3

Proof of Correctness

Theoretical approach:

Provide a proof of correctness

1. Iterative algorithms:

Loop Invariants

2. Recursive algorithms:

Mathematical Induction

A recursive algorithm may also include loops

Correctness of loops are proved using loop invariants
Overall recursive algorithm are proved using mathematical
induction



Kyle Berney – Ch 5.5: Program Correctness 4 - 1

Loop Invariants

Definition: A loop invariant is a formal property that is
(claimed to be) true at the start of each iteration of a loop.

Must show three things about a loop invariant:

1. Initialization: It is true prior to the first iteration
2. Maintenance: If it is true before a given iteration, then it

remains true before the next iteration
3. Termination: When the loop terminates, the invariant gives

us a useful property that helps show that the algorithm is
correct



Kyle Berney – Ch 5.5: Program Correctness 4 - 2

Loop Invariants

Must show three things about a loop invariant:

1. Initialization: It is true prior to the first iteration
2. Maintenance: If it is true before a given iteration, then it

remains true before the next iteration
3. Termination: When the loop terminates, the invariant gives

us a useful property that helps show that the algorithm is
correct

Remark: Notice the similarity to mathematical induction

Initialization ≈ Base case
Maintenance ≈ Inductive case
Unlike induction, loop invariants have a termination
condition



Kyle Berney – Ch 5.5: Program Correctness 5 - 1

Correctness of Insertion Sort

INSERTIONSORT(A[1 . . . n])
for j = 2 to n

key = A[j ]
// Insert A[j ] into the sorted sequence A[1 . . . j − 1]
i = j − 1
while i > 0 and A[i ] > key

A[i + 1] = A[i ]
i = i − 1

A[i + 1] = key

Loop Invariant:

At the start of each iteration of the for loop, the subarray
A[1 . . . j − 1] consists of the elements originally in
A[1 . . . j − 1], but in sorted order.



Kyle Berney – Ch 5.5: Program Correctness 5 - 2

Correctness of Insertion Sort

Loop Invariant:

At the start of each iteration of the for loop, the subarray
A[1 . . . j − 1] consists of the elements originally in
A[1 . . . j − 1], but in sorted order.

Initialization:

Prior to the first iteration, j = 2.
The subarray A[1 . . . j − 1] = A[1 . . . 1] = A[1] is a single
element.
Trivially, A[1] is sorted.



Kyle Berney – Ch 5.5: Program Correctness 5 - 3

Correctness of Insertion Sort

Loop Invariant:

At the start of each iteration of the for loop, the subarray
A[1 . . . j − 1] consists of the elements originally in
A[1 . . . j − 1], but in sorted order.

Maintenance:

Prior to the j-th iteration, we know that our loop invariant is
true, i.e., the subarray A[1 . . . j − 1] is sorted
In the body of the for loop, the elements
A[j − 1], A[j − 2], A[j − 3], etc. are shifted by one position
to the right, until it finds the correct position for A[j ].
Then, it inserts A[j ] into this position.
Therefore, at the start of the (j + 1)-th iteration, the
subarray A[1 . . . j ] is sorted.



Kyle Berney – Ch 5.5: Program Correctness 5 - 4

Correctness of Insertion Sort

Loop Invariant:

At the start of each iteration of the for loop, the subarray
A[1 . . . j − 1] consists of the elements originally in
A[1 . . . j − 1], but in sorted order.

Remark: Formally, another loop invariant is needed for the
while loop, inside of the body of the for loop

For simplicity of exposition, we presented an informal
argument in the maintenance step



Kyle Berney – Ch 5.5: Program Correctness 5 - 5

Correctness of Insertion Sort

Loop Invariant:

At the start of each iteration of the for loop, the subarray
A[1 . . . j − 1] consists of the elements originally in
A[1 . . . j − 1], but in sorted order.

Termination:

The for loop terminates when j = n + 1.
Therefore, A[1 . . . j − 1] = A[1 . . . n] consists of the
elements originally in A[1 . . . n], but in sorted order.



Kyle Berney – Ch 5.5: Program Correctness 6 - 1

Correctness of Recursive Factorial
FACTORIAL(n)

if n == 0
return 1

return n · FACTORIAL(n − 1)

Proposition: For all non-negative integers n, FACTORIAL(n)
correctly returns the value of n!.



Kyle Berney – Ch 5.5: Program Correctness 6 - 2

Correctness of Recursive Factorial

Proposition: For all non-negative integers n, FACTORIAL(n)
correctly returns the value of n!.

Proof: Let n be an arbitrary non-negative integer.
Inductive Hypothesis: Assume inductively that for all integers
k , such that 0 ≤ k < n, P(k ) is true. In other words,
FACTORIAL(k ) correctly returns the value of k !.
Base Case: Assume n = 0.
We know that 0! = 1, hence, FACTORIAL(0) correctly returns
1.



Kyle Berney – Ch 5.5: Program Correctness 6 - 3

Correctness of Recursive Factorial

Proposition: For all non-negative integers n, FACTORIAL(n)
correctly returns the value of n!.

Proof:
Inductive Case: Assume n > 0.
From our inductive hypothesis, we know that for
0 ≤ n − 1 < n, FACTORIAL(n − 1) correctly returns the value
of (n − 1)!. Therefore, FACTORIAL(n) correctly returns

n · FACTORIAL(n − 1) = n · (n − 1)!

= n! . ■


