
Kyle Berney – Ch 5.4: Recursive Algorithms 1

Ch 5.4: Recursive Algorithms

KYLE BERNEY

DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

ICS 141: Discrete Mathematics for Computer Science I



Kyle Berney – Ch 5.4: Recursive Algorithms 2

Recursive Algorithms

Definition: An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same problem
with smaller input
Correspondence to mathematical induction

Base Case(s)
Recursive algorithms explicitly solves the problem for
“small” values

Inductive Case
Recursive algorithms solves the problem by assuming
the algorithm correctly executes for smaller values



Kyle Berney – Ch 5.4: Recursive Algorithms 3

Recursive Factorial

Base Case: n = 0

0! = 1

Inductive Case: n > 0

n! = n · (n − 1)!

FACTORIAL(n)
if n == 0

return 1
return n · FACTORIAL(n − 1)



Kyle Berney – Ch 5.4: Recursive Algorithms 4

Recursive Exponential

Base Case: n = 0

an = 1

Inductive Case: n > 0

an = a · an−1

EXPONENT(a, n)
if n == 0

return 1
return a · EXPONENT(a, n − 1)



Kyle Berney – Ch 5.4: Recursive Algorithms 5

Recursive Linear Search

Base Case: n = 0

x is not in the array containing 0 elements

Inductive Case: n > 0

If the first element is x , then return the index
Otherwise, recurse on the remaining n − 1 elements

LINEARSEARCH(x , A[lef t . . . r ight ])
if lef t > r ight

return NOT FOUND

if x == A[lef t ]
return lef t

else
return LINEARSEARCH(x , A[lef t + 1 . . . r ight ])



Kyle Berney – Ch 5.4: Recursive Algorithms 6 - 1

Recursive Binary Search

Base Case: n = 0

x is not in the array containing 0 elements

Inductive Case: n > 0

If the median element is x , then return the index
If the median element is greater than x , recurse on all
elements smaller than the median
If the median element is smaller than x , recurse on all
elements larger than the median



Kyle Berney – Ch 5.4: Recursive Algorithms 6 - 2

Recursive Binary Search

BINARYSEARCH(A[lef t . . . r ight ], x)
if lef t > r ight

return NOT FOUND

mid = ⌊(lef t + r ight)/2⌋
if x == A[mid ]

return mid
else if x < A[mid ]

BINARYSEARCH(lef t , mid − 1)
else

BINARYSEARCH(mid + 1, r ight)



Kyle Berney – Ch 5.4: Recursive Algorithms 7 - 1

Tower of Hanoi

Given three rods and n disks of various diameters initially
stacked on one rod, in order of decreasing size. The
objective is to move the entire stack of n disks onto one of
the other rods, while obeying the following rules:

1. Only a single disk can be moved at a time
2. Each move consists of taking the upper disk from one of

the stacks and placing it on top of another stack or an
empty rod

3. No disk may be placed on top of a disk that is smaller than
it



Kyle Berney – Ch 5.4: Recursive Algorithms 7 - 2

Tower of Hanoi

Designing a recursive algorithm:

If a given instance of a problem can be solved direcly,
solve it
Otherwise, reduce the problem into one or more simpler
instances of the same problem

Do not be concerned with solving the smaller instances (i.e.,
recursive calls)

Similar to induction, we assume smaller instances of the
same problem can be solved correctly

Use the solution of the smaller subproblems to solve the
problem



Kyle Berney – Ch 5.4: Recursive Algorithms 7 - 3

Tower of Hanoi

Inductive Case: n > 0

1. Recursively move (n − 1) disks onto another rod (leaving
the largest diameter disk on the original rod)

2. Move the largest diameter disk onto the empty destination
rod

3. Recursively move (n − 1) disks on top of the largest
diameter disk



Kyle Berney – Ch 5.4: Recursive Algorithms 7 - 4

Tower of Hanoi

Inductive Case: n > 0

1. Recursively move (n − 1) disks onto another rod (leaving
the largest diameter disk on the original rod)

2. Move the largest diameter disk onto the empty destination
rod

3. Recursively move (n − 1) disks on top of the largest
diameter disk

Base Case: n = 0

1. The tower of hanoi problem is vacuously solved when
there are no disks



Kyle Berney – Ch 5.4: Recursive Algorithms 7 - 5

Tower of Hanoi

TOWEROFHANOI(n, src, dest , temp)
if n > 0

TOWEROFHANOI(n − 1, src, temp, dest)
Move disk n from src to dest
TOWEROFHANOI(n − 1, temp, dest , src)



Kyle Berney – Ch 5.4: Recursive Algorithms 8

Divide-and-Conquer

Many recursive algorithms follow a divide-and-conquer
approach

Divide: Break the problem into smaller subproblems
Conquer: Recursively solve the subproblems
Combine: Use the solutions of the subproblems to solve
the original problem



Kyle Berney – Ch 5.4: Recursive Algorithms 9

Merge Sort

Divide: Divide the array of n elements into two subarrays of
size n/2
Conquer: Sort each subarray recursively
Combine: Merge the two sorted subarrays into a single
sorted array of n elements

Requires the use of an auxilliary MERGE procedure



Kyle Berney – Ch 5.4: Recursive Algorithms 10 - 1

Merge

Given two sorted sequences L and R

1. Starting with the first elements in L and R
2. Choose the smaller of the two elements and place it into

the sorted sequence
3. Repeat until all elements from L and R have been placed

into the sorted sequence



Kyle Berney – Ch 5.4: Recursive Algorithms 10 - 2

Merge

For simplicity of our pseudocode, we will append ∞ to the
end of each sorted sequence

L = A[p . . . q]
R = A[q + 1 . . . r ]



Kyle Berney – Ch 5.4: Recursive Algorithms 10 - 3

Merge
MERGE(A, p, q, r )

n1 = q − p + 1
n2 = r − q
Let L[1 . . . n1 + 1] and R[1 . . . n2 + 1] be new arrays
for i = 1 to n1

L[i ] = A[p + i − 1]
for i = 1 to n2

R[i ] = A[q + j ]
L[n1 + 1] = ∞
R[n2 + 1] = ∞
i = 1
j = 1
for k = p to r

if L[i ] ≤ R[j ]
A[k ] = L[i ]
i = i + 1

else
A[k ] = R[i ]
j = j + 1



Kyle Berney – Ch 5.4: Recursive Algorithms 11

Merge Sort

MERGESORT(A, p, r )
if p < r

q = ⌊(p + r )/2⌋
MERGESORT(A, p, q)
MERGESORT(A, q + 1, r )
MERGE(A, p, q, r )


