

Ch 5.3: Recursive Definitions

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Recursive Definitions

- Recall from Chapter 2.4, that we can define sequences using a recurrence relation:
 - 1. Provide one or more initial terms of the sequence
 - 2. Rule for determining subsequent terms from terms that preceed it
- Generalize this approach to recursively define functions, sets, and other structures

Recursively Defined Functions

- Recursively define a function with the set of non-negative integers as its domain:
 - 1. Basis Step:
 - Specify the value of the function at 0
 - 2. Recursive Step:
 - Give a rule for finding its value at an integer from its values at smaller integers

Recursively Defined Functions

- <u>Ex:</u>
 - Basis Step: *f*(0) = 3
 - Recursive Step: f(n + 1) = 2f(n) + 3

.

$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$$

$$f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$$

$$f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$$

$$f(4) = 2f(3) + 3 = 2 \cdot 45 + 3 = 93$$

- Recursively define a set:
 - 1. Basis Step:
 - Specify an initial collection of elements
 - 2. Recursive Step:
 - Give a rule for forming new elements in the set from those already known to be in the set

- Ex: Let *S* be the set of all positive multiples of 3
 - Basis Step: $3 \in S$
 - Recursive Step: If $x \in S$ and $y \in S$ then $x + y \in S$
- Apply recursive step:

1.
$$3 + 3 = 6$$

 $\Rightarrow \{3, 6\}$
2. $3 + 6 = 9$ and $6 + 6 = 12$
 $\Rightarrow \{3, 6, 9, 12\}$
3. $9 + 3 = 12, 9 + 6 = 12 + 3 = 15, 9 + 9 = 12 + 6 = 18,$
 $12 + 9 = 21,$ and $12 + 12 = 24$
 $\Rightarrow \{3, 6, 9, 12, 15, 18, 21, 24\}$

- The set Σ^* of strings over the alphabet Σ is defined as
 - Basis Step: $\lambda \in \Sigma^*$ (recall that λ is the empty string)
 - Recursive Step: If $w \in \Sigma^*$ and $x \in \Sigma$ then $wx \in \Sigma^*$

- The set Σ^* of strings over the alphabet Σ is defined as
 - Basis Step: $\lambda \in \Sigma^*$ (recall that λ is the empty string)
 - Recursive Step: If $w \in \Sigma^*$ and $x \in \Sigma$ then $wx \in \Sigma^*$

• Ex: Let
$$\Sigma = \{0, 1\}$$

1. $\Sigma^* = \{0, 1\}$
2. $\Sigma^* = \{0, 1, 00, 01, 10, 11\}$
3. $\Sigma^* = \{0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$

Recursively Defined Rooted Trees

- Formally discuss rooted trees in Chapter 10 and 11 (ICS 241)
- Recursively define a rooted tree:
 - 1. Basis Step: A single vertex is a rooted tree.
 - 2. Recursive Step: Given *n* rooted trees T_1, T_2, \ldots, T_n we can form another rooted tree starting with a single root and connecting the root to all other *n* rooted trees.

Recursively Defined Binary Trees

- Binary trees are rooted trees where every vertex has at most two children (i.e., connected to at most two other vertices)
 Recursively define a binary tree:
 - 1. Basis Step: The empty set is a binary tree
 - 2. Recursive Step: Given 2 binary trees T_1 and T_2 we can form another binary tree starting with a single root and connecting the root to T_1 and T_2

Recursively Defined Binary Trees

Recursively Defined Full Binary Trees

- Full binary trees are binary trees where every vertex has either 0 or two children (i.e., connected to either 0 or two other vertices)
- Recursively define a full binary tree:
 - 1. Basis Step: A single vertex is a full binary tee
 - 2. Recursive Step: Given 2 full binary trees T_1 and T_2 we can form another binary tree starting with a single root and connecting the root to T_1 and T_2

Recursively Defined Full Binary Trees

