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Proof by Induction

= Induction is a proof method for proving universally quantified
proposition
= Statements about all elements contained in a countable
set
= Ex:Vn e IN (P(n))
® |Induction is one of the most useful tools for developing and
analyzing algorithms

= Correspondence between induction and recursive

algorithms
= Every iterative algorithm can be written recursively (and

vice versa)
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Proof by Induction

= Composed of three main parts:

= Inductive Hypothesis (I.H.):
« Assumption that the proposition is true for some subset
of values
= Base Case(s) (or Basis Step(s)):
= Prove that the proposition is true for “small” values
= Inductive Case (or Inductive Step):
« Prove that the proposition is true for all values that are
not considered in the base case(s) using the Inductive
Hypothesis
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Weak vs. Strong Induction

= Given a proposition P(n) for all values of nin a countable set
s EXine Z*
s Weak Induction

= |nductive Hypothesis: Assume inductively that P(k) is true
fork =n—1.
= P(n—1) = P(n)

= Strong Induction

» Inductive Hypothesis: Assume inductively that P(k) is true
for0 < k < n.
s (P(OAPR)AN...NP(n—1)) = P(n)
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Weak vs. Strong Induction

= Given a proposition P(n) for all values of nin a countable set
s EXine Z*
s Weak Induction

= |nductive Hypothesis: Assume inductively that P(k) is true
fork =n—1.
= P(n—1) = P(n)

= Strong Induction

» Inductive Hypothesis: Assume inductively that P(k) is true
for0 < k < n.
s (P(OAPR)AN...NP(n—1)) = P(n)

= In this course, ALWAYS use strong induction

Kyle Berney — Ch 5.1 & Ch 5.2: Mathematical Induction



Axiom of Induction

= Induction is a valid proof technique because of the
well-ordering property (Appendix 1)

= Every non-empty subset of the set of positive integers
contains a least element
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Axiom of Induction

. Assume for the sake of contradiction that there exists a
positive integer x such that P(x) is false

. The set of positive integers for which P(n) is false is
non-empty

. By the well-ordering property, there exists a least element y
such that P(y) is false

. We know that P(1) is true, from the base case

. Hence, y > 1 and P(y — 1) must be true

. Using the inductive hypothesis, we can show that
Ply —1)= P(y)

. P(y) is true which is a contradiction. Therefore, the
assumption that P(x) is false is wrong.
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Boilerplate Template

» Proposition: P(n) for every n € IN

s Proof: (By induction)

_et n be an arbitrary integer such that n € IN.

nductive Hypothesis (I.H.): Assume inductively that for all
integers k, such that 0 < k < n, P(k) is true.

Case 1: (Base Case)

Assume that n = 0. [Prove base case here]. Therefore P(0)
IS true.

Case 2: (Inductive Case)

Assume that n > 0. [Prove inductive case here using the
inductive hypothesis]. Therefore P(n) is true. B
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Boilerplate Template

= |mportant notes:

= Boilerplate shown only has a single base case

= Some proofs by induction will have multiple base cases

= The values of n assumed in the base case(s) and
iInductive case will change depending on the proposition

s When performing your proof sketch, start with the inductive
case in order to figure out what the base cases are

s In this course, ALWAYS structure your proof by induction
using the boilerplate
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Exercises

s Proposition: For all positive integers n,

zn:i— nin+1)
— 2
=1
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Exercises

s Proposition: For all positive integers n,

zn:i— nin+1)
— 2
=1

s Proof: Let n be an arbitrary positive integer.
Inductive Hypothesis: Assume inductively that for all integers

k, such that 1 < k < n, P(k) is true. In other words,

k(k +1)
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Exercises

s Proposition: For all positive integers n,

zn:i— nin+1)
— 2
=1

s Proof:
Base Case: Assume n= 1.
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Exercises

s Proposition: For all positive integers n,

zn:i— nin+1)
— 2
=1

s Proof:
Inductive Case: Assume n > 1.

n
E:i=1+2+3+.”
i=1
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Exercises

s Proposition: For all positive integers n,

zn:i— nin+1)
— 2
=1

s Proof:
From our inductive hypothesis, we know that for
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Exercises

s Proposition: For all positive integers n,

n

Zi= n(n2+1)
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof: Let n be an arbitrary integer such that n > 23.
Inductive Hypothesis: Assume inductively that for all integers
k, such that 23 < k < n, P(k) is true. In other words, we can

make a postage of k-cents using an unlimited supply of
5-cent and 7-cent stamps.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof:
Case 1: (Base Case) Assume that n = 24.
We use two 7-cent stamps and two 5-cent stamps,

[+7+5+5=24.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof:
Case 2: (Base Case) Assume that n = 25.
We use five 5-cent stamps,

5+5+5+5+5=25.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof:
Case 3: (Base Case) Assume that n = 26.
We use three 7-cent stamps and one 5-cent stamp,

[+7+7+5=26.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof:
Case 4: (Base Case) Assume that n = 27.
We use one 7-cent stamps and four 5-cent stamp,

[+5+5+b5+5=27.
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Proof:
Case 5: (Base Case) Assume that n = 28.
We use four 7-cent stamps,

[T+7+7+7=28.

Kyle Berney — Ch 5.1 & Ch 5.2: Mathematical Induction



Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

Proof:
Case 6: (Inductive Case) Assume that n > 28.
We choose to first use a 5-cent stamp, leaving (n — 5) cents

remaining. From our inductive hypothesis, we know that for
23 < n—5 < n, we can make a postage of (n — 5) cents
using an unlimited supply of 7-cent and 5-cent stamps.
Therefore, we can make a postage of n cents. B
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Exercises

= Proposition: Given an unlimited supply of 5-cent stamps and
/-cent stamps, we can make any postage larger than 23
cents.

s Question: |s there another way to construct this inductive
proof?
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Exercises

= Proposition: For every integer n > 4,
2" < nl.
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Exercises

= Proposition: For every integer n > 4,
2" < nl.

= Proof: Let n be an arbitrary integer such that n > 4.
Inductive Hypothesis: Assume inductively that for all integers
k, such that 4 < k < n, P(k) is true. In other words,

ok < Kkl

Base Case: Assume n = 4.
2" = 24 — 16 and n! = 4! = 24, therefore,

2" =16 < 24 = n|
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Exercises

= Proposition: For every integer n > 4,
2" < nl.

Proof:

nductive Case: Assume n > 4.

—-rom our inductive hypothesis, we know that for
4 < n—1<n,

2" 1 < (n—1)!

Hence,
2N =2.2~
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Exercises

» Proposition: (Bernoulli’s Inequality) Letn e Z — Z~ . If
h € R such that h > —1, then

1+nh<(1+h".
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Exercises

» Proposition: (Bernoulli’s Inequality) Letn e Z — Z~ . If
h € R such that h > —1, then

1+nh<(1+h".

= Proof: Let n be an arbitrary non-negative integer.
Inductive Hypothesis: Assume inductively that for all integers
k, such that 0 < k < n, P(k) is true. In other words,

1+kh<(+h~,

Base Case: Assume n = 0.
1+nh=1+0-h=1and (1+h)" =1+ h)® =1. Therefore,

1+nh=1<1=(1+h".
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Exercises

» Proposition: (Bernoulli’s Inequality) Letn e Z — Z~ . If
h € R such that h > —1, then

1+nh<(1+h".

Proof:
nductive Case: Assume n > 0.

—-rom our inductive hypothesis, we know that for
0<n—1<n,

1T+(n—1Nh<{1+h"".
Hence, (1+h"=1+h""11+h)
> (1 +(n—1)h)(1 + h)
=1+h+(n—1h+(n—1H
=1+nh+(n—1)h
>1+nh.
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