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Terminology

Cryptography is the study of transforming information so that
it cannot be easily recovered without special knowledge

Encryption is the process of making a message secret
Decryption is the process of determining the original
messsage from the encrypted message

Cryptosystem is a set of algorithms and protocols used to
implement a particular security service

Encryption algorithm
Decryption algorithm
Key generation algorithm
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Caesar Cipher

One of the earliest known uses of cryptography used by
Julius Caesar
Encrypt messages by shifting each letter by a fixed amount

Represent each letter by an integer in {0, 1, . . . , 25}
Define a function to encode each letter

f (x) = (x + 3) (mod 26)

Use the inverse function to decrypt each letter

f−1(x) = (x − 3) (mod 26)



Kyle Berney – Ch 4.6: Cryptography 3 - 2

Caesar Cipher

One of the earliest known uses of cryptography used by
Julius Caesar
Encrypt messages by shifting each letter by a fixed amount

Represent each letter by an integer in {0, 1, . . . , 25}
Define a function to encode each letter

f (x) = (x + 3) (mod 26)

Use the inverse function to decrypt each letter

f−1(x) = (x − 3) (mod 26)

Ex: “HELLO WORLD” ⇔ “KHOOR ZRUOG”
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Affine Cipher

Generalization of a Caesar cipher
Let a and b be integers
Use a bijection function f such that

f (x) = ax + b (mod 26)

Suppose that y = ax + b (mod 26), then to decrypt

where a has an inverse modulo 26
⇒ GCD(a, 26) = 1

x ≡ (y − b)a−1 (mod 26)
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Transposition Cipher

Define a permutation σ : {1, 2, . . . , m} → {1, 2, . . . , m}
To encrypt a message:

1. Split the letters of the message into blocks of m letters
2. Use σ to permute each of the blocks of m letters

To decrypt a message:

1. Split the letters of the message into blocks of m letters
2. Use the inverse permutation, σ−1 to permute each of the

blocks of m letters
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Transposition Cipher

Ex: Given σ : {1, 2, 3, 4} → {1, 2, 3, 4} such that σ(1) = 3,
σ(2) = 1, σ(3) = 4, and σ(4) = 2. Encrypt the message
“PIRATE ATTACK”
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Transposition Cipher

Ex: Given σ : {1, 2, 3, 4} → {1, 2, 3, 4} such that σ(1) = 3,
σ(2) = 1, σ(3) = 4, and σ(4) = 2. Encrypt the message
“PIRATE ATTACK”

Solution:

1. Split the message into blocks of 4 letters:
“PIRA TEAT TACK”

2. Permute each block using σ to obtain:
“IAPR ETTA AKTC”
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Private Key Cryptography

The previous ciphers are all examples of private key
cryptosystems

Once the encryption key is known, you can quickly
decrypt the message

Caesar Cipher: f defines the encryption key
Affine Cipher: f defines the encryption key
Transposition Cipher: σ defines the encryption key

When a private key crypotosystem is used, two parties who
communicate must share a secret key
A modern example is the Advanced Encryption Standard
(AES)
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Public Key Cryptosystems

In a public key cryptosystem, knowing how to send an
encrypted message does not help decrypt messages

Everyone can have a publicaly known encryption key
Only the decryption key is kept secret

Advantage:

Two parties do not need to exchange keys

Disadvantage:

Encryption and decryption can be time-consuming

For applications that require encryption and decryption to be
time-sensitive, private key cryptosystems are used

Public key cryptosystems may be used to exchange
private keys
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RSA Cryptosystem

Introduced by three MIT researchers in 1977

Ronald Rivest
Adi Shamir
Leonard Adleman

Developed by Clifford Cocks, working in secret at the UK’s
Goverment Communications Headquarters in 1973

Declassified in 1997
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RSA Cryptosystem

Basic idea is the observation that it is practical to find three
very large positive integers, e, d , and n such that

For all integers m, where 0 ≤ m < n
(me)d ≡ m (mod n)

However, when given only e and n, it is very difficult to find d

To encrypt a message m:
me (mod n)

To decrypt a message me:
(me)d ≡ m (mod n)

n and e comprise the public key
d represents the private key
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RSA Cryptosystem

Keys are generated as follows:

1. Choose two large prime numbers p and q
2. Compute n = pq
3. Compute λ(n), called the Carmichael’s totient function

λ(n) = LCM(p − 1, q − 1)
4. Choose an integer e such that

1 < e < λ(n)
GCD(e, λ(n)) = 1, i.e., they are coprime

5. Compute d ≡ e−1 (mod λ(n))
Equivalent to solving the equation

de ≡ 1 (mod λ(n))
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RSA Cryptosystem

Keys are generated as follows:

1. Choose two large prime numbers p and q
2. Compute n = pq
3. Compute λ(n), called the Carmichael’s totient function

λ(n) = LCM(p − 1, q − 1)
4. Choose an integer e such that

1 < e < λ(n)
GCD(e, λ(n)) = 1, i.e., they are coprime

5. Compute d ≡ e−1 (mod λ(n))
Equivalent to solving the equation

de ≡ 1 (mod λ(n))

Remark: In the original RSA paper, the Euler totient function
ϕ(n) = (p − 1)(q − 1) is used instead of λ(n),
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RSA Cryptosystem

Computing/finding the private key d requires knowledge of
the large primes p and q

Factoring n = pq cannot be done (currently) in a reasonable
length of time

Theoretical factorization algorithms have been developed
for quantum computers that may be used in the future

In comparision, finding large primes p and q to generate the
keys can be done relatively fast using primality testing
algorithms


