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Terminology

Cryptography is the study of transforming information so that
It cannot be easily recovered without special knowledge

Encryption is the process of making a message secret
Decryption is the process of determining the original
messsage from the encrypted message

Cryptosystem is a set of algorithms and protocols used to
implement a particular security service

= Encryption algorithm
= Decryption algorithm
= Key generation algorithm
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Caesar Cipher

= One of the earliest known uses of cryptography used by
Julius Caesar

Encrypt messages by shifting each letter by a fixed amount

Represent each letter by an integer in {0,1,...,25}
Define a function to encode each letter

f(x)=(x+3) (mod 26)
Use the inverse function to decrypt each letter
f~1(x) = (x —3) (mod 26)
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Caesar Cipher

= One of the earliest known uses of cryptography used by
Julius Caesar

Encrypt messages by shifting each letter by a fixed amount

Represent each letter by an integer in {0,1,...,25}
Define a function to encode each letter
f(x)=(x+3) (mod 26)
Use the inverse function to decrypt each letter
f~1(x) = (x —3) (mod 26)

Ex: “HELLO WORLD” < “KHOOR ZRUOG”
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Affine Cipher

= Generalization of a Caesar cipher
s Let gaand b be integers
s Use a bijection function f such that
f(x)=ax+b (mod 26)
where a has an inverse modulo 26
= GCD(4a,26) = 1

s Suppose that y = ax + b (mod 26), then to decrypt
x=(y—ba ' (mod26)
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Transposition Cipher

= Define a permutation o : {1,2,...,m} — {1,2,...,m}
= Jo encrypt a message:

1. Split the letters of the message into blocks of m letters
2. Use o to permute each of the blocks of m letters

= Jo decrypt a message:

1. Split the letters of the message into blocks of m letters
2. Use the inverse permutation, o~ to permute each of the
blocks of m letters

Kyle Berney — Ch 4.6: Cryptography



Transposition Cipher

= Ex:Given0:{1,2,3,4} — {1,2,3,4} such that o(1) = 3,
o0(2) =1, 0(3) = 4, and o(4) = 2. Encrypt the message
“PIRATE ATTACK”
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Transposition Cipher

= Ex:Given0:{1,2,3,4} — {1,2,3,4} such that o(1) = 3,
o0(2) =1, 0(3) = 4, and o(4) = 2. Encrypt the message
“PIRATE ATTACK”

s Solution:

1. Split the message into blocks of 4 letters:
“PIRA TEAT TACK”

2. Permute each block using o to obtain:
“IAPR ETTA AKTC”
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Private Key Cryptography

= The previous ciphers are all examples of private key
cryptosystems

= Once the encryption key is known, you can quickly
decrypt the message

Caesar Cipher: f defines the encryption key
Affine Cipher: f defines the encryption key
Transposition Cipher: o defines the encryption key

When a private key crypotosystem is used, two parties who
communicate must share a secret key

A modern example is the Advanced Encryption Standard
(AES)
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Public Key Cryptosystems

= |n a public key cryptosystem, knowing how to send an
encrypted message does not help decrypt messages

= Everyone can have a publicaly known encryption key
= Only the decryption key is kept secret

= Advantage:

= Two parties do not need to exchange keys
= Disadvantage:

= Encryption and decryption can be time-consuming

s For applications that require encryption and decryption to be
time-sensitive, private key cryptosystems are used

= Public key cryptosystems may be used to exchange
private keys
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RSA Cryptosystem

® |ntroduced by three MIT researchers in 1977

= Ronald Rivest
= Adi Shamir
= Leonard Adleman

s Developed by Clifford Cocks, working in secret at the UK'’s
Goverment Communications Headquarters in 1973

= Declassified in 1997
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RSA Cryptosystem

= Basic idea is the observation that it is practical to find three
very large positive integers, e, d, and n such that

= For all integers m, where 0 < m< n
« (M®)? = m (mod n)
However, when given only e and n, it is very difficult to find d

To encrypt a message m:
m® (mod n)

To decrypt a message m°:
(m®) =m (mod n)

n and e comprise the public key
d represents the private key
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RSA Cryptosystem

s Keys are generated as follows:

. Choose two large prime numbers p and g
. Compute n = pqg
. Compute A(n), called the Carmichael’s totient function
s A(N)=LCM(p—1,g—1)
. Choose an integer e such that
s 1 < e <A
» GCD(e,A(n)) =1, i.e., they are coprime
. Compute d = e~ (mod A(n))
= Equivalent to solving the equation

de=1 (mod A(n))
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RSA Cryptosystem

s Keys are generated as follows:

. Choose two large prime numbers p and g
. Compute n = pqg
. Compute A(n), called the Carmichael’s totient function
s A(N)=LCM(p—1,g—1)
. Choose an integer e such that
s 1 < e <A
» GCD(e,A(n)) =1, i.e., they are coprime
. Compute d = e~ (mod A(n))
= Equivalent to solving the equation

de=1 (mod A(n))

s Remark: In the original RSA paper, the Euler totient function
$(n) = (p— 1)(g — 1) is used instead of A(n),
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RSA Cryptosystem

= Computing/finding the private key d requires knowledge of
the large primes p and g

s Factoring n = pg cannot be done (currently) in a reasonable
length of time

= Theoretical factorization algorithms have been developed
for quantum computers that may be used in the future

= |In comparision, finding large primes p and g to generate the
keys can be done relatively fast using primality testing
algorithms
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