

Ch 4.4: Solving Congruences

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

- Let $m \in \mathbb{Z}^+$ and $a, b, x \in \mathbb{Z}$
- A linear congruence is a congruence of the form:

$$ax \equiv b \pmod{m}$$

• Ex: a = 5, b = 3, and m = 8

$$5x \equiv 3 \pmod{8}$$

• $x = \dots, -17, -9, -1, 7, 15, 23, 31, \dots$

- Let $m \in \mathbb{Z}^+$ and $a, b, x \in \mathbb{Z}$
- A linear congruence is a congruence of the form:

$$ax \equiv b \pmod{m}$$

• Ex: a = 5, b = 3, and m = 8

$$5x \equiv 3 \pmod{8}$$

- $x = \dots, -17, -9, -1, 7, 15, 23, 31, \dots$
- Observation: If we can find a solution x to the linear congruence, then we can find infinitely many others
 - All of the above solutions of x are congruent to each other modulo m

- Let $m \in \mathbb{Z}^+$ and $a, b, x \in \mathbb{Z}$
- A linear congruence is a congruence of the form:

$$ax \equiv b \pmod{m}$$

• Ex: a = 5, b = 3, and m = 8

$$5x \equiv 3 \pmod{8}$$

- x = ..., -17, -9, -1, 7, 15, 23, 31, ...
- Question: How many mutually incongruent solutions are there?

From Theorem 3 in the lecture slides of Chapter 4.1

$$ax \equiv b \pmod{m} \Leftrightarrow ax = b + km$$
 for some integer k

• From Corollary 1 in the lecture slides of Chapter 4.3, in order that there exists integers x and -k satisfying the equation

$$ax + (-k)m = b$$

it is necessary and sufficient that $d \mid b$, where d = GCD(a, m)

For ease of exposition, let us consider the linear combination

$$ax + by = c$$

 Using Theorem 2 from the lecture notes of Chapter 4.3, and the Extended Euclidean Algorithm, we can find w and z such that

$$aw + bz = d$$

where d = GCD(a, b)

• If $d \mid c$, then there exists an integer k such that

$$c = dk$$

• We have that $x_0 = wk$ and $y_0 = zk$ is a solution to ax + by = c since, aw + bz = d

$$\Rightarrow$$
 awk + bzk = dk

$$\Rightarrow ax_0 + by_0 = c$$

• Suppose that x' and y' are also a solution to ax + by = c

$$ax' + by' = c = ax_0 + by_0$$

• Recall that c = dk, hence

$$\frac{a}{d}x' + \frac{b}{d}y' = \frac{a}{d}x_0 + \frac{b}{d}y_0$$

$$\Rightarrow \frac{a}{d}x' - \frac{a}{d}x_0 = \frac{b}{d}y_0 - \frac{b}{d}y'$$

$$\Rightarrow \frac{a}{d}(x' - x_0) = \frac{b}{d}(y_0 - y')$$

$$\frac{a}{d}\left(x'-x_0\right)=\frac{b}{d}\left(y_0-y'\right)$$

 By definition of divisibility, it follows from the above equation that

$$\frac{b}{d} \left| \frac{a}{d} (x' - x_0) \right|$$

From Corollary 2 in the lecture slides of Chapter 4.3,

$$GCD(a/d, b/d) = 1$$

Therefore, from Lemma 2 in the lecture slides of Chapter 4.3,

$$\left|\frac{b}{d}\right|(x'-x_0)$$

By definition of divisibility, there exists an integer t such that

$$x'-x_0=t\cdot\frac{b}{d}$$

Thus,

$$\frac{a}{d}(x' - x_0) = \frac{b}{d}(y_0 - y')$$

$$\Rightarrow \frac{a}{d} \cdot t \cdot \frac{b}{d} = \frac{b}{d}(y_0 - y')$$

$$\Rightarrow \frac{a}{d} \cdot t = y_0 - y'$$

$$\Rightarrow y' = y_0 - t \cdot \frac{a}{d}$$

Therefore, there exists an integer t such that

$$x' = x_0 + t \cdot \frac{b}{d}$$
and
$$y' = y_0 - t \cdot \frac{a}{d}$$

• Furthermore, for all integers t, x' and y' are valid solutions to the linear combination ax' + by' = c since

$$ax' + by' = a\left(x_0 + t \cdot \frac{b}{d}\right) + b\left(y_0 - t \cdot \frac{a}{d}\right)$$
$$= ax_0 + by_0 + t \cdot \frac{ab}{d} - t \cdot \frac{ab}{d}$$
$$= c$$

Theorem 1: The linear combination

$$ax + by = c$$

has a solution if and only if $d \mid c$, where d = GCD(a, b). Furthermore, if x_0 and y_0 are solutions to this equation, then the set of solutions consists of all integer pairs such that

$$x = x_0 + t \cdot \frac{b}{d}$$
 and $y = y_0 - t \cdot \frac{a}{d}$

for all integers t.

• Theorem 2: Let d = GCD(a, m). The linear congruence $ax \equiv b \pmod{m}$

has no solution if $d \nmid b$ and it has d mutually incongruent solutions if $d \mid b$

• Ex: Since GCD(15, 12) = 3 and 3 | 9, the linear congruence

$$15x \equiv 9 \pmod{12}$$

has exactly 3 mutually incongruent solutions

- By inspection, we find x = 3 is a valid solution
- For t = 0, 1, 2 we obtain 3 mutually incongruent solutions given by

$$x = 3 + t \cdot \frac{12}{3} = 3 + 4t$$

- <u>Definition</u>: We say that a solution x of a linear congruence $ax \equiv b \pmod{m}$ is <u>unique</u> modulo m if any solution x' is congruent to $x \pmod{m}$
- Definition: If $a\overline{a} \equiv 1 \pmod{m}$, then \overline{a} is the inverse of a modulo m.

• Corollary 1: If GCD(a, m) = 1, then a has an inverse and it is unique modulo m.

- Corollary 1: If GCD(a, m) = 1, then a has an inverse and it is unique modulo m.
- Proof: Since GCD(a, m) = 1, it follows from Theorem 2 that $ax \equiv 1 \pmod{m}$

has a single mutually incongruent solution, i.e., it is unique modulo *m*.

Systems of Linear Congruences

A solution to the system of k linear congruences

$$a_1 x \equiv b_1 \pmod{m}$$
 $a_2 x \equiv b_2 \pmod{m}$
 \vdots
 $a_k x \equiv b_k \pmod{m}$

is an integer x that satisfies each of the congruences in the system

Systems of Linear Congruences

- The simplest examples of such problems occurs in the solution of a single linear congruence with a large modulus
- Let m have a prime factorization

$$m = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

It follows from the Fundamental Theorem of Arithmetic that

if and only if

$$a \equiv b \pmod{m}$$
 $a \equiv b \pmod{p_1^{e_1}}$
 $a \equiv b \pmod{p_2^{e_2}}$
 \vdots
 $a \equiv b \pmod{p_k^{e_k}}$

Systems of Linear Congruences

Ex: Solve the linear congruence

$$3x \equiv 11 \pmod{2275}$$

- Prime factorization: $2275 = 5^2 \cdot 7 \cdot 13$
- Need to solve the following system of linear congruences

$$3x \equiv 11 \pmod{25}$$

 $3x \equiv 11 \pmod{7}$
 $3x \equiv 11 \pmod{13}$

 To solve this system linear congruences, we need the following Theorem

■ Theorem 3: (Chinese Remainder Theorem) Let $m_1, m_2, ..., m_k$ be pairwise relatively prime positive integers and let $a_1, a_2, ..., a_k$ be arbitrary integers such that $GCD(a_i, m_i) = 1$. The system of linear congruences

$$a_1 x \equiv b_1 \pmod{m_1}$$
 $a_2 x \equiv b_2 \pmod{m_2}$
 \vdots
 $a_k x \equiv b_k \pmod{m_k}$

has a unique solution modulo $m = m_1 m_2 \dots m_k$.

Proof: From Theorem 2, there exists a unique solution c_i for each of the k linear congruences such that

$$a_i c_i \equiv b_i \pmod{m_i}$$

Let $n_i = m/m_i = m_1 \dots m_{i-1} m_{i+1} \dots m_k$. Since all m_i 's are relatively prime, $GCD(n_i, m_i) = 1$. Thus, from Corollary 1, n_i has an inverse modulo m_i

$$n_i \overline{n_i} \equiv 1 \pmod{m_i}$$

Proof: Consider

$$X_0 = C_1 n_1 \overline{n_1} + C_2 n_2 \overline{n_2} + \ldots + C_k n_k \overline{n_k}$$

Notice that m_i divides each n_j except for n_i . Thus,

$$a_i x_0 = a_i c_1 n_1 \overline{n_1} + a_i c_2 n_2 \overline{n_2} + \ldots + a_i c_k n_k \overline{n_k}$$

$$\equiv a_i c_i n_i \overline{n_i} \pmod{m_i}$$

$$\equiv a_i c_i \pmod{m_i}$$

$$\equiv b_i \pmod{m_i}$$

Hence, x_0 is a solution to each of the k linear congruences in the system. This shows the existance of a solution.

Proof: Next, we will show uniqueness of the solution modulo m. Assume that y is also a solution to the k linear congruences in the system. From Theorem 2,

$$x_0 \equiv c_i \equiv y \pmod{m_i}$$

Hence, from Theorem 3 in the lecture slides of Chapter 4.1,

$$m_i \mid (x_0 - y)$$

for each m_i . Since all m_i 's are pairwise relatively prime, i.e., they do not share a common factor,

$$m_1 m_2 \dots m_k \mid (x_0 - y)$$

 $\Rightarrow m \mid (x_0 - y)$

Therefore, $y \equiv x_0 \pmod{m}$ and x_0 is unique modulo m.

■ Ex:
$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$
■ $a_1 = a_2 = a_3 = 1$
■ $c_1 = 2, c_2 = 3, c_3 = 2$
■ $m_1 = 3, m_2 = 5, m_3 = 7$
■ $m = 3 \cdot 5 \cdot 7 = 105$
■ $n_1 = 105/3 = 35, n_2 = 105/5 = 21, n_3 = 105/7 = 15$
■ $\overline{n_1} = 2, \overline{n_2} = 1, \overline{n_3} = 1$
 $x_0 = c_1 n_1 \overline{n_1} + c_2 n_2 \overline{n_2} + c_3 n_3 \overline{n_3}$
 $= (2 \cdot 35 \cdot 2) + (3 \cdot 21 \cdot 1) + (2 \cdot 15 \cdot 1)$
 $= 140 + 63 + 30 = 233$
 $\equiv 23 \pmod{105}$

$$a_1 = a_2 = a_3 = 3$$

- By inspection, we find that
 - $x \equiv 12 \pmod{25}$
 - $x \equiv 6 \pmod{7}$
 - $x \equiv 8 \pmod{13}$
- $c_1 = 12$, $c_2 = 6$, $c_3 = 8$
- $n_1 = 2275/25 = 91$, $n_2 = 2275/7 = 325$, $n_3 = 2275/13 = 175$

 $3x \equiv 11 \pmod{13}$

Ex:

$$3x \equiv 11 \pmod{25}$$

 $3x \equiv 11 \pmod{7}$
 $3x \equiv 11 \pmod{13}$

Need to solve the following

$$91\overline{n_1} \equiv 16\overline{n_1} \equiv 1 \pmod{25}$$

 $325\overline{n_2} \equiv 3\overline{n_2} \equiv 1 \pmod{7}$
 $175\overline{n_3} \equiv 6\overline{n_3} \equiv 1 \pmod{13}$

By inspection, we find

- $\overline{n_1} = 11$
- $\overline{n_2} = 5$
- $\overline{n_3} = 11$

Ex: $3x \equiv 11 \pmod{25}$ $3x \equiv 11 \pmod{7}$ $3x \equiv 11 \pmod{13}$ $m = 25 \cdot 7 \cdot 13 = 2275$ $c_1 = 12, c_2 = 6, c_3 = 8$ • $n_1 = 2275/25 = 91$, $n_2 = 2275/7 = 325$, $n_3 = 175$ $\overline{n_1} = 11, \overline{n_2} = 5, \overline{n_3} = 11$ $X_0 = C_1 n_1 \overline{n_1} + C_2 n_2 \overline{n_2} + C_3 n_3 n_3$ $= (12 \cdot 91 \cdot 11) + (6 \cdot 325 \cdot 5) + (8 \cdot 175 \cdot 11)$ = 12012 + 9750 + 15400 = 37162 $\equiv 762 \pmod{2275}$

Fermat's Little Theorem

Theorem 4: (Fermat's Little Theorem) If p is prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Furthermore, for every integer a

$$a^p \equiv a \pmod{p}$$

Fermat's Little Theorem

Theorem 4: (Fermat's Little Theorem) If p is prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Furthermore, for every integer a

$$a^p \equiv a \pmod{p}$$

 Proof: Out-of-scope of this course (requires knowledge of reduced residue systems and results related to Euler's φ function)