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Linear Congruences

Let m ∈ Z+ and a, b, x ∈ Z

A linear congruence is a congruence of the form:

ax ≡ b (mod m)

Ex: a = 5, b = 3, and m = 8

5x ≡ 3 (mod 8)
x = . . . ,−17,−9,−1, 7, 15, 23, 31, . . .
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Linear Congruences

Let m ∈ Z+ and a, b, x ∈ Z

A linear congruence is a congruence of the form:

ax ≡ b (mod m)

Ex: a = 5, b = 3, and m = 8

5x ≡ 3 (mod 8)
x = . . . ,−17,−9,−1, 7, 15, 23, 31, . . .

Observation: If we can find a solution x to the linear
congruence, then we can find infinitely many others

All of the above solutions of x are congruent to each other
modulo m
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Linear Congruences

Let m ∈ Z+ and a, b, x ∈ Z

A linear congruence is a congruence of the form:

ax ≡ b (mod m)

Ex: a = 5, b = 3, and m = 8

5x ≡ 3 (mod 8)
x = . . . ,−17,−9,−1, 7, 15, 23, 31, . . .

Question: How many mutually incongruent solutions are
there?
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Linear Congruences

From Theorem 3 in the lecture slides of Chapter 4.1

ax ≡ b (mod m) ⇔ ax = b + km

for some integer k

From Corollary 1 in the lecture slides of Chapter 4.3, in order
that there exists integers x and −k satisfying the equation

ax + (−k )m = b

it is necessary and sufficient that d | b, where d = GCD(a, m)
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Linear Congruences

For ease of exposition, let us consider the linear combination

ax + by = c

Using Theorem 2 from the lecture notes of Chapter 4.3, and
the Extended Euclidean Algorithm, we can find w and z such
that

aw + bz = d
where d = GCD(a, b)
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Linear Congruences

If d | c, then there exists an integer k such that

c = dk

We have that x0 = wk and y0 = zk is a solution to

aw + bz = d

⇒ awk + bzk = dk

⇒ ax0 + by0 = c

ax + by = c
since,
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Linear Congruences

Suppose that x ′ and y ′ are also a solution to ax + by = c

ax ′ + by ′ = c = ax0 + by0

Recall that c = dk , hence
a
d

x ′ +
b
d

y ′ =
a
d

x0 +
b
d

y0

⇒ a
d

x ′ − a
d

x0 =
b
d

y0 −
b
d

y ′

⇒ a
d

(
x ′ − x0

)
=

b
d

(
y0 − y ′)
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Linear Congruences

By definition of divisibility, it follows from the above equation
that

a
d

(
x ′ − x0

)
=

b
d

(
y0 − y ′)

b
d

∣∣∣∣ a
d

(x ′ − x0)

From Corollary 2 in the lecture slides of Chapter 4.3,

Therefore, from Lemma 2 in the lecture slides of Chapter 4.3,

GCD(a/d , b/d) = 1

b
d

∣∣∣∣ (x ′ − x0)
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Linear Congruences

By definition of divisibility, there exists an integer t such that

x ′ − x0 = t · b
d

Thus, a
d

(x ′ − x0) =
b
d

(y0 − y ′)

⇒ a
d
· t · b

d
=

b
d

(y0 − y ′)

⇒ a
d
· t = y0 − y ′

⇒ y ′ = y0 − t · a
d
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Linear Congruences

Therefore, there exists an integer t such that

x ′ = x0 + t · b
d

and y ′ = y0 − t · a
d

Furthermore, for all integers t , x ′ and y ′ are valid solutions to
the linear combination ax ′ + by ′ = c since

ax ′ + by ′ = a
(

x0 + t · b
d

)
+ b

(
y0 − t · a

d

)
= ax0 + by0 + t · ab

d
− t · ab

d
= c
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Linear Congruences

Theorem 1: The linear combination
ax + by = c

has a solution if and only if d | c, where d = GCD(a, b).
Furthermore, if x0 and y0 are solutions to this equation, then
the set of solutions consists of all integer pairs such that

x = x0 + t · b
d

and y = y0 − t · a
d

for all integers t .
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Linear Congruences

Theorem 2: Let d = GCD(a, m). The linear congruence
ax ≡ b (mod m)

has no solution if d ∤ b and it has d mutually incongruent
solutions if d | b

Ex: Since GCD(15, 12) = 3 and 3 | 9, the linear congruence

15x ≡ 9 (mod 12)

has exactly 3 mutually incongruent solutions

By inspection, we find x = 3 is a valid solution
For t = 0, 1, 2 we obtain 3 mutually incongruent solutions
given by

x = 3 + t · 12
3

= 3 + 4t
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Linear Congruences

Definition: We say that a solution x of a linear congruence
ax ≡ b (mod m) is unique modulo m if any solution x ′ is
congruent to x (mod m)

Definition: If aa ≡ 1 (mod m), then a is the inverse of a
modulo m.
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Linear Congruences

Corollary 1: If GCD(a, m) = 1, then a has an inverse and it is
unique modulo m.
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Linear Congruences

Corollary 1: If GCD(a, m) = 1, then a has an inverse and it is
unique modulo m.

Proof: Since GCD(a, m) = 1, it follows from Theorem 2 that
ax ≡ 1 (mod m)

has a single mutually incongruent solution, i.e., it is unique
modulo m.



Kyle Berney – Ch 4.4: Solving Congruences 5 - 1

Systems of Linear Congruences

A solution to the system of k linear congruences

a1x ≡ b1 (mod m)

a2x ≡ b2 (mod m)

...

ak x ≡ bk (mod m)

is an integer x that satisfies each of the congruences in the
system
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Systems of Linear Congruences

The simplest examples of such problems occurs in the
solution of a single linear congruence with a large modulus
Let m have a prime factorization

m = pe1
1 pe2

2 . . . pek
k

It follows from the Fundamental Theorem of Arithmetic that

a ≡ b (mod m)
if and only if

a ≡ b (mod pe1
1 )

a ≡ b (mod pe2
2 )

...

a ≡ b (mod pek
k )
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Systems of Linear Congruences

Ex: Solve the linear congruence

3x ≡ 11 (mod 2275)

Prime factorization: 2275 = 52 · 7 · 13
Need to solve the following system of linear congruences

3x ≡ 11 (mod 25)

3x ≡ 11 (mod 7)

3x ≡ 11 (mod 13)

To solve this system linear congruences, we need the
following Theorem
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Chinese Remainder Theorem

Theorem 3: (Chinese Remainder Theorem) Let
m1, m2, . . . , mk be pairwise relatively prime positive integers
and let a1, a2, . . . , ak be arbitrary integers such that
GCD(ai , mi ) = 1. The system of linear congruences

a1x ≡ b1 (mod m1)

a2x ≡ b2 (mod m2)

...

ak x ≡ bk (mod mk )

has a unique solution modulo m = m1m2 . . .mk .
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Chinese Remainder Theorem

Proof: From Theorem 2, there exists a unique solution ci for
each of the k linear congruences such that

aici ≡ bi (mod mi )

Let ni = m/mi = m1 . . .mi−1mi+1 . . .mk . Since all mi ’s are
relatively prime, GCD(ni , mi ) = 1. Thus, from Corollary 1, ni

has an inverse modulo mi

nini ≡ 1 (mod mi )
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Chinese Remainder Theorem

Proof: Consider

aix0 = aic1n1n1 + aic2n2n2 + . . . + aick nk nk

≡ aicinini (mod mi )

≡ aici (mod mi )

≡ bi (mod mi )

Notice that mi divides each nj except for ni . Thus,
x0 = c1n1n1 + c2n2n2 + . . . + ck nk nk

Hence, x0 is a solution to each of the k linear congruences in
the system. This shows the existance of a solution.
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Chinese Remainder Theorem

Proof: Next, we will show uniqueness of the solution modulo
m. Assume that y is also a solution to the k linear
congruences in the system. From Theorem 2,

x0 ≡ ci ≡ y (mod mi )

Hence, from Theorem 3 in the lecture slides of Chapter 4.1,
mi | (x0 − y )

for each mi . Since all mi ’s are pairwise relatively prime, i.e.,
they do not share a common factor,

m1m2 . . .mk | (x0 − y )

⇒ m | (x0 − y )

Therefore, y ≡ x0 (mod m) and x0 is unique modulo m.
■



Kyle Berney – Ch 4.4: Solving Congruences 6 - 5

Chinese Remainder Theorem

Ex: x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)
a1 = a2 = a3 = 1
c1 = 2, c2 = 3, c3 = 2
m1 = 3, m2 = 5, m3 = 7
m = 3 · 5 · 7 = 105
n1 = 105/3 = 35, n2 = 105/5 = 21, n3 = 105/7 = 15
n1 = 2, n2 = 1, n3 = 1

x0 = c1n1n1 + c2n2n2 + c3n3n3

= (2 · 35 · 2) + (3 · 21 · 1) + (2 · 15 · 1)

= 140 + 63 + 30 = 233

≡ 23 (mod 105)
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Chinese Remainder Theorem

Ex: 3x ≡ 11 (mod 25)

3x ≡ 11 (mod 7)

3x ≡ 11 (mod 13)

By inspection, we find that

x ≡ 12 (mod 25)
x ≡ 6 (mod 7)
x ≡ 8 (mod 13)

c1 = 12, c2 = 6, c3 = 8
n1 = 2275/25 = 91, n2 = 2275/7 = 325, n3 = 2275/13 = 175

a1 = a2 = a3 = 3
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Chinese Remainder Theorem

Ex: 3x ≡ 11 (mod 25)

3x ≡ 11 (mod 7)

3x ≡ 11 (mod 13)

Need to solve the following

91n1 ≡ 16n1 ≡ 1 (mod 25)

325n2 ≡ 3n2 ≡ 1 (mod 7)

175n3 ≡ 6n3 ≡ 1 (mod 13)

By inspection, we find

n1 = 11
n2 = 5
n3 = 11
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Chinese Remainder Theorem

Ex: 3x ≡ 11 (mod 25)

3x ≡ 11 (mod 7)

3x ≡ 11 (mod 13)

m = 25 · 7 · 13 = 2275
c1 = 12, c2 = 6, c3 = 8
n1 = 2275/25 = 91, n2 = 2275/7 = 325, n3 = 175
n1 = 11, n2 = 5, n3 = 11

x0 = c1n1n1 + c2n2n2 + c3n3n3

= (12 · 91 · 11) + (6 · 325 · 5) + (8 · 175 · 11)

= 12012 + 9750 + 15400 = 37162

≡ 762 (mod 2275)
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Fermat’s Little Theorem

Theorem 4: (Fermat’s Little Theorem) If p is prime and a is
an integer not divisible by p, then

ap−1 ≡ 1 (mod p)

Furthermore, for every integer a

ap ≡ a (mod p)
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Fermat’s Little Theorem

Theorem 4: (Fermat’s Little Theorem) If p is prime and a is
an integer not divisible by p, then

ap−1 ≡ 1 (mod p)

Furthermore, for every integer a

ap ≡ a (mod p)

Proof: Out-of-scope of this course (requires knowledge of
reduced residue systems and results related to Euler’s ϕ
function)


