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Greatest Common Divisor

s Definition: If a and b are integers, not both zero, than an
integer d is called the greatest common divisor of a and b if

1.d>0

2. dis a common divisor of both a and b, and

3. each integer f that is also a common divisor of both a and
b is also a divisor of d

= Denoted GCD(a, b)
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Greatest Common Divisor

s Definition: If a and b are integers, not both zero, than an
integer d is called the greatest common divisor of a and b if

1.d>0

2. dis a common divisor of both a and b, and

3. each integer f that is also a common divisor of both a and
b is also a divisor of d

= Denoted GCD(a, b)

s Ex: Whatis GCD(12, 8)?

= The positive divisors of 12 are: 1, 2, 3, 4, 6, and 12
= The positive divisors of 8 are: 1, 2,4, and 8
= GCD(12,8) =4
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Euclidean Algorithm

= Given two positive integers a and b, the GCD(a, b) can be
found by sucessively dividing the larger integer by the smaller
integer and replacing the larger integer with the remainder

until it becomes 0
s EX: Find the GCD(341, 527)

s 527 =341-1+186
= 341 =186-1+ 155
= 186 =155-1 + 31
s 155=31-5+0

GCD(341,527) = 31
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Euclidean Algorithm

= Given two positive integers a and b, the GCD(a, b) can be
found by sucessively dividing the larger integer by the smaller
integer and replacing the larger integer with the remainder
until it becomes 0

= Correctness is based on the following lemma
s Lemmal:lLeta=bqg+r,where a, b, g, and r are integers.
Then GCD(a, b) = GCD(b, r)
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Greatest Common Divisor

s Theorem 1: If aand b are integers, not both zero, then
GCD(a, b) exists and is unique

Proof: (Sketch)

Use the Euclidean Algorithm to show that GCD(a, b) exists.
It follow from the definition of GCD that if both dy and d, are
greatest common divisors of a and b, then d; | d» and

d> | dy. By definition, there exists positive integers g and h
such that gd; = d» and had, = d;. Hence, d> = ghd, and
1 = gh, therefore, g = h=1and d; = .
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Linear Combinations

= An integral linear combination of the integers a and b is an
expression of the form

ax + by
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Linear Combinations

= An integral linear combination of the integers a and b is an
expression of the form

ax + by

s Theorem 2: (Bezout’s Theorem) If d = GCD(a, b), then there
exists integers x and y such that
ax+by=d
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Linear Combinations

= An integral linear combination of the integers a and b is an
expression of the form

ax + by

s Theorem 2: (Bezout’s Theorem) If d = GCD(a, b), then there
exists integers x and y such that
ax+by=d

m Corollary 1: There exists integers x and y satisfying the
equation

ax+by=c
if and only if d | ¢, where d = GCD(a, b)
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Extended Euclidean Algorithm

= |n the Euclidean Algorithm, successive remainders are used
= In the Extended Euclidean Algorithm, successive quotients
are additionally used

» Let g1, 0o, ..., gk be the sequence of quotients
« Fori=1,2,...,k, compute s, and fx where

» So=1,81=0,and s; = S;_» — Qi—1Sj—1

« =0, =1, and ti = ti_o — Qi—1ti_1
= S, and t, are the Bezout coefficients, satisfying

GCD(a, b) = asi + bty
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Extended Euclidean Algorithm

s EXx: Find the Bezout coefficients for 217 and 41

s 217 =41-5+12
41 =12-3+5
12=5-2+2
5=2-2+1
2=1-2+0
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Extended Euclidean Algorithm

s EXx: Find the Bezout coefficients for 217 and 41

217 =41 -5+12
41 =12-3+5
12=5-2+2
5=2-2+1
2=1-2+0

g1 =5 q=3,q=2, q4=2 and g5 = 2
52=50—C71S1=1—5()
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Extended Euclidean Algorithm

s EXx: Find the Bezout coefficients for 217 and 41

217 =41 -5+12
41 =12-3+5
12=5-2+2
5=2-2+1
2=1-2+0

g1=50=3,03=2,q4=2,and g5 = 2
tb=10 — g1ty =0—5(1) = -5

3=t — qgoto =1 —3(—5) =16

fy =bb —Qsly = —5 — 2(16) = —37

s = t3 — qQuty = 16 — 2(—37) = 90
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Extended Euclidean Algorithm

s EXx: Find the Bezout coefficients for 217 and 41

s 217 =41-5+12
41 =12-3+5
12=5-2+2
5=2-2+1
2=1-2+0

Ss = —17
s = 90
GCD(217,41) =1 =217(—17) + 41(90)

Kyle Berney — Ch 4.3: Primes and Greatest Common Divisors



Primes

s Every integer greater than 1 is divisible by at least two
integers (1 and itself)
Definition: An integer p greater than 1 is called prime if its
only positive divisors are 1 and p

If a positive integer greater than 1 is not prime, then it is
called composite

EX:

« 2,3,5,7,11,13 are prime
= 4,6,8,9,10 are composite
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Relatively Prime

= Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

s Lemma 2: If a, b, and ¢ are positive integers such that
GCD(a,b) =1and a| bc,thena| c
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Relatively Prime

= Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

s Lemma 2: If a, b, and ¢ are positive integers such that
GCD(a,b) =1and a| bc,thena| c

s Proof: Let g, b, and ¢ be arbitrary positive integers such that
GCD(a, b) = 1 and a | bc. Since GCD(a, b) = 1, it follows from
Theorem 2 that there exists integers x and y such that

ax + by =1
Multiplying both sides by c,
cax+cby=c
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Relatively Prime

= Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

s Lemma 2: If a, b, and ¢ are positive integers such that
GCD(a,b) =1and a| bc,thena| c

= Proof: By definition of divisibility, it follows from a | bc, that

there exists an integer k such that bc = ak. Hence,
cax+aky =c

alcx + ky) =c.
By definition of divisibility, a | c.
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Relatively Prime

= Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

= Corollary 2: If d = GCD(a, b), then a/d and b/d are relatively
prime.
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Relatively Prime

= Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

= Corollary 2: If d = GCD(a, b), then a/d and b/d are relatively
prime.

s Proof: From Theorem 2, there exists integers x and y such

that
ax+by=d

EX+9 =1
a* g’

It follows from Corollary 1 that Gcb(a/d, b/d) | 1, and
therefore, GecD(a/d, b/d) = 1.

Then
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Application to Modular Arithmetic

s Proposition 1: Let m be a positive integer and let a, b, and ¢
be integers. If ac = bc (mod m) and GCD(c, m) = 1, then
a=>b (mod m)
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Application to Modular Arithmetic

s Proposition 1: Let m be a positive integer and let a, b, and ¢
be integers. If ac = bc (mod m) and GCD(c, m) = 1, then
a=>b (mod m)

Proof: Let m be an arbitrary positive integer and let a, b, and
¢ be arbitrary integers. From Theorem 3 in the lecture notes
of Chapter 4.1, ac = bc (mod m) implies that

m | ac — bc = c(a— b). Since GCD(c, m) = 1, it follows from
Lemma 2 that m | a — b. Therefore, from Theorem 3 in the
lecture notes of Chapter 4.1, m | a— b implies thata= b
(mod m). B
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every

positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

= Ex:

s 104 =2°%.13
» 105=3-5.7
s 308=2°-7-11
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every

positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

= Ex:
« 104 =2°.13
» 105=3-5.7
s 308=2°-7-11

= To prove this, we need the following lemma
s L.emma 3: (Euclid’s Lemma) Let a1a>...a, € Z and p be a
prime. Ifp | aya>...an, thenp | g forsomei=1,2,...,n
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Euclid’'s Lemma

s Lemma 3: (Euclid’'s Lemma) Let a1, a»,...,a, € Z and p be
aprime. lfp|aja,...an thenp| g forsomei=1,2,...,n
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Euclid’'s Lemma

s Lemma 3: (Euclid’'s Lemma) Let a1, a»,...,a, € Z and p be
aprime. lfp|aja,...an thenp| g forsomei=1,2,...,n

s Proof: Let nand a4, as, . . ., a, be an arbitrary positive
integers and p be an arbitrary prime.
Inductive Hypothesis: Assume inductively that for all integers
k, such that 0 < k < n, P(k) is true. In other words, If

p|aia...acthenp| aforsomei=1,2,...,k
Base Case: Assume n = 1.
Trivially, p | a; implies that p | a; for i = 1.
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Euclid’'s Lemma

s Lemma 3: (Euclid’'s Lemma) Let a1, a»,...,a, € Z and p be
aprime. lfp|aja,...an thenp| g forsomei=1,2,...,n

s Proof:
Inductive Case: Assume n > 1.

p|laa...ap=(aia...an_1)an

If p | a,, then we are done. Otherwise, p 1 a, and

GCD(p, a,) = 1. It follows from Lemma 2 that

p| ajax...an_1. And from our inductive hypothesis, since
0 < n—1 < n,we know that p | a; for some
i=1,2,...,n— 1. -
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Proof: Let n be an arbitrary positive integer greater than 1.
We will first show that n can be written as a product of
primes.

Inductive Hypothesis: Assume inductively that for all integers
k, such that 1 < k < n, P(k) is true. In other words, k can be
written as a product of primes.

Base Case: Assume n = 2.

Trivially, 2 is prime and can be written as itself.
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Proof:
nductive Case: Assume n > 2.
f nis prime, then trivially n can written as itself.

Otherwise, nis composite and n = ab for some integers a
and bsuchthat1 <a<nand1 < b <n.
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of

primes. This is unique, up to the order of factors.

Proof:

nductive Case: Assume n > 1.

From our inductive hypothesis, since 1 < a < nand

1 < b < n, aand b can both be written as a product of
primes. Leta=pipo...prand b=qiq- ... Qs for some
positive integers r and s and primes p4, po, ..., p, and

1,90, ...,0s. Then
n=ab=(pipP2...0)(q1G2...3Qs)

IS a product of primes.

Kyle Berney — Ch 4.3: Primes and Greatest Common Divisors



Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Proof: Next, we will show that the factorization is unique.
Assume for the sake of contradiction that there exists a
positive integer that does not have a unique factorization of

primes. From the Well-Ordering Principle, there exists a least
element n that satisfies this assumption. For some positive
integers rand s, let pypo...prand gi1qo . .. gs be some
primes, such that

n=pPiPz...Pr=0q1Q2...4s
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Fundamental Theorem of Arithmetic

s Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Proof:
By definition of divisibility, p; | g192 . . . gs. It follows from
Lemma 3 that p; | g; forsome i =1,2,...,s. Without loss of

generality, assume that p; | g;. Since p; and g; are both
prime, it must be that p; = g;. Hence, we can cancel them
out

P2...Pr=0q2...0s
We now have two distinct prime factorizations of some

integer strictly smaller than n, a contradiction since we
assumed that n was the least integer that does not have a
unique factorization of primes. H
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Trial Division

s Theorem 4: If nis a composite integer, then n has a prime
divisor less than or equal to v/n
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Trial Division

s Theorem 4: If nis a composite integer, then n has a prime
divisor less than or equal to v/n

= Proof: Let n be an arbitrary composite integer.
By defintion of a composite integer, n has some factor a such
that 1 < a < n. By definition of a factor,

n=ab

where b is a positive integer greater than 1. We will first show
that a < v/nor b < +/n.

Kyle Berney — Ch 4.3: Primes and Greatest Common Divisors



Trial Division

s Theorem 4: If nis a composite integer, then n has a prime
divisor less than or equal to v/n

s Proof:
Assume for the sake of contradiction that a > +/n and

b > +/n. Then,
ab>+/n-\/n=n

A contradiction, since n = ab. Thus, a < v/nor b < +/n.
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Trial Division

s Theorem 4: If nis a composite integer, then n has a prime
divisor less than or equal to v/n

s Proof:
Without loss of generality, assume that a < \/n. If ais prime,
then we are done. Otherwise, using Theroem 3, a can be
written as a product of primes, and consequently, n has a

prime divisor less than or equal to \/n. -
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Trial Division

s Theorem 4: If nis a composite integer, then n has a prime
divisor less than or equal to v/n

= |t follows from Theorem 4 that an integer nis prime if it is not

divisible by any prime less than or equal to v/n
= | eads to a brute-force algorithm, known as trial division

« Divide n by all primes not exceeding v/n

= nis prime if it is not divisible by any of these primes (and
composite otherwise)
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Trial Division

s Ex:Is 101 prime?

] \/101 ~ 10.05

Primes less than or equal to v/101 are: 2, 3, 5, and 7
1101 since 101/2 = 50.5
1101 since 101/3 ~ 33.3
1101 since 101/5 = 20.2

1101 since 101/7 ~ 14.4
Therefore, 101 is prime
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Finding the Prime Factorization

s From Theorem 4, n has a prime factor less than or equal to

NG

. Staring from the smallest prime 2, find whether n has a prime

factor < /n.
. If a prime factor p is found, then continue factoring n/p
. Otherwise, nis prime and its factorization is itself
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Finding the Prime Factorization

. Staring from the smallest prime 2, find whether n has a prime
factor < +/n.

. If a prime factor p is found, then continue factoring n/p

. Otherwise, nis prime and its factorization is itself

s EX: Find prime factorization of 7007

= 7| 7007 and 7007/7 = 1001
7 11001 and 1001/7 = 143
11| 143 and 143/11 = 13
13 is prime
Therefore, 7007 =7 -7-11-13
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Applications of Factoring and Primes

s Factoring and primality testing is important to cryptography

= RSA encryption is based on the fact that multiplying is
much easier than factoring

s Currently, there is no polynomial-time algorithm for factoring
integers
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Applications of Factoring and Primes

= The greatest common divisor and least common multiple can
be found using prime factorizations

s Definition: The least common multiple of the positive integers

a and b is the smallest positive integer that is divisible by
both aand b

s Denoted LCM(a, b)
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Applications of Factoring and Primes

= The greatest common divisor and least common multiple can
be found using prime factorizations

o leta=p%p2...p>7and b=p2pP%... pb

= Each exponent is a non-negative integer
= All primes occuring in the prime factorization of either a or
b are included in both factorizations (with a 0 exponent, if

necessary)

MIN(a1,bq) . MIN(az,bo) MIN(&n,bn)

GCD(as b) p1 p2 pn

MAX(a1,bq) . .MAX(a2,bo) MAX(an,bn)

LCM(a, b) p1 p2 pn
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Euclid’s Theorem

s Theorem 5: (Euclid’s Theorem) There are infinitely many
primes

Kyle Berney — Ch 4.3: Primes and Greatest Common Divisors



Euclid’s Theorem

s Theorem 5: (Euclid’s Theorem) There are infinitely many
primes

= Proof: Consider any arbitrary finite list of prime numbers
pP1, P2, ..., Pn. We will show that there exists at least one
additional prime number not included in this list. Let
P=pip>...ppandletg=P + 1.

If g Is prime, then we have found an additonal prime not in
the list.
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Euclid’s Theorem

s Theorem 5: (Euclid’s Theorem) There are infinitely many
primes

s Proof:
Otherwise, g is composite and there exists some prime factor
p such that p | g. If piis on our list of primes, then p | P. It
follows from Theorem 1 (statement 1.) in the lecture notes of

Chapter 4.1, thatifp| gandp | Pthenp | g — P = 1. Since
no prime numbers divides 1, p cannot be on our list of
primes. Therefore, at least one more prime number exists
that is not in the list.
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Prime Number Theorem

s Let 7t(x) be the number of prime numbers less than x
s Theorem 6: (Prime Number Theorem) The ratio of 7t(x) and
x/ In x approaches 1 as x grows without bounds.

jim X

= 1
x—o0 X/ In x

s |t follows that a “good” approximation of 7t(x) is
nx) &
" nx

s “Good” approximation means that the relative error of the
approximation approaches 0 as x increases without bound
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