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Greatest Common Divisor

Definition: If a and b are integers, not both zero, than an
integer d is called the greatest common divisor of a and b if

1. d > 0
2. d is a common divisor of both a and b, and
3. each integer f that is also a common divisor of both a and

b is also a divisor of d

Denoted GCD(a, b)



Kyle Berney – Ch 4.3: Primes and Greatest Common Divisors 2 - 2

Greatest Common Divisor

Definition: If a and b are integers, not both zero, than an
integer d is called the greatest common divisor of a and b if

1. d > 0
2. d is a common divisor of both a and b, and
3. each integer f that is also a common divisor of both a and

b is also a divisor of d

Denoted GCD(a, b)

Ex: What is GCD(12, 8)?

The positive divisors of 12 are: 1, 2, 3, 4, 6, and 12
The positive divisors of 8 are: 1, 2, 4, and 8
GCD(12, 8) = 4
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Euclidean Algorithm

Given two positive integers a and b, the GCD(a, b) can be
found by sucessively dividing the larger integer by the smaller
integer and replacing the larger integer with the remainder
until it becomes 0

Ex: Find the GCD(341, 527)

527 = 341 · 1 + 186
341 = 186 · 1 + 155
186 = 155 · 1 + 31
155 = 31 · 5 + 0

GCD(341, 527) = 31
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Euclidean Algorithm

Given two positive integers a and b, the GCD(a, b) can be
found by sucessively dividing the larger integer by the smaller
integer and replacing the larger integer with the remainder
until it becomes 0

Correctness is based on the following lemma
Lemma 1: Let a = bq + r , where a, b, q, and r are integers.
Then GCD(a, b) = GCD(b, r )
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Greatest Common Divisor

Theorem 1: If a and b are integers, not both zero, then
GCD(a, b) exists and is unique

Proof: (Sketch)
Use the Euclidean Algorithm to show that GCD(a, b) exists.
It follow from the definition of GCD that if both d1 and d2 are
greatest common divisors of a and b, then d1 | d2 and
d2 | d1. By definition, there exists positive integers g and h
such that gd1 = d2 and hd2 = d1. Hence, d2 = ghd2 and
1 = gh, therefore, g = h = 1 and d1 = d2. ■
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Linear Combinations

An integral linear combination of the integers a and b is an
expression of the form

ax + by



Kyle Berney – Ch 4.3: Primes and Greatest Common Divisors 5 - 2

Linear Combinations

An integral linear combination of the integers a and b is an
expression of the form

ax + by

Theorem 2: (Bezout’s Theorem) If d = GCD(a, b), then there
exists integers x and y such that

ax + by = d
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Linear Combinations

An integral linear combination of the integers a and b is an
expression of the form

ax + by

Theorem 2: (Bezout’s Theorem) If d = GCD(a, b), then there
exists integers x and y such that

ax + by = d

Corollary 1: There exists integers x and y satisfying the
equation

ax + by = c

if and only if d | c, where d = GCD(a, b)
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Extended Euclidean Algorithm

In the Euclidean Algorithm, successive remainders are used
In the Extended Euclidean Algorithm, successive quotients
are additionally used

Let q1, q2, . . . , qk be the sequence of quotients
For i = 1, 2, . . . , k , compute sk and tk where

s0 = 1, s1 = 0, and si = si−2 − qi−1si−1

t0 = 0, t1 = 1, and ti = ti−2 − qi−1ti−1

sk and tk are the Bezout coefficients, satisfying

GCD(a, b) = ask + btk
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Extended Euclidean Algorithm

Ex: Find the Bezout coefficients for 217 and 41

217 = 41 · 5 + 12
41 = 12 · 3 + 5
12 = 5 · 2 + 2
5 = 2 · 2 + 1
2 = 1 · 2 + 0
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Extended Euclidean Algorithm

Ex: Find the Bezout coefficients for 217 and 41

217 = 41 · 5 + 12
41 = 12 · 3 + 5
12 = 5 · 2 + 2
5 = 2 · 2 + 1
2 = 1 · 2 + 0

q1 = 5, q2 = 3, q3 = 2, q4 = 2, and q5 = 2

s2 = s0 − q1s1 = 1 − 5(0) = 1
s3 = s1 − q2s2 = 0 − 3(1) = −3
s4 = s2 − q3s3 = 1 − 2(−3) = 7
s5 = s3 − q4s4 = −3 − 2(7) = −17
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Extended Euclidean Algorithm

Ex: Find the Bezout coefficients for 217 and 41

217 = 41 · 5 + 12
41 = 12 · 3 + 5
12 = 5 · 2 + 2
5 = 2 · 2 + 1
2 = 1 · 2 + 0

q1 = 5, q2 = 3, q3 = 2, q4 = 2, and q5 = 2

t2 = t0 − q1t1 = 0 − 5(1) = −5
t3 = t1 − q2t2 = 1 − 3(−5) = 16
t4 = t2 − q3t3 = −5 − 2(16) = −37
t5 = t3 − q4t4 = 16 − 2(−37) = 90
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Extended Euclidean Algorithm

Ex: Find the Bezout coefficients for 217 and 41

217 = 41 · 5 + 12
41 = 12 · 3 + 5
12 = 5 · 2 + 2
5 = 2 · 2 + 1
2 = 1 · 2 + 0

s5 = −17
t5 = 90
GCD(217, 41) = 1 = 217(−17) + 41(90)
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Primes

Every integer greater than 1 is divisible by at least two
integers (1 and itself)
Definition: An integer p greater than 1 is called prime if its
only positive divisors are 1 and p

If a positive integer greater than 1 is not prime, then it is
called composite

Ex:

2, 3, 5, 7, 11, 13 are prime
4, 6, 8, 9, 10 are composite
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Relatively Prime

Lemma 2: If a, b, and c are positive integers such that
GCD(a, b) = 1 and a | bc, then a | c

Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1
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Relatively Prime

Lemma 2: If a, b, and c are positive integers such that
GCD(a, b) = 1 and a | bc, then a | c

Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

Proof: Let a, b, and c be arbitrary positive integers such that
GCD(a, b) = 1 and a | bc. Since GCD(a, b) = 1, it follows from
Theorem 2 that there exists integers x and y such that

ax + by = 1

Multiplying both sides by c,

cax + cby = c
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Relatively Prime

Lemma 2: If a, b, and c are positive integers such that
GCD(a, b) = 1 and a | bc, then a | c

Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

Proof: By definition of divisibility, it follows from a | bc, that
there exists an integer k such that bc = ak . Hence,

cax + aky = c

a(cx + ky ) = c .
By definition of divisibility, a | c.

■
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Relatively Prime

Corollary 2: If d = GCD(a, b), then a/d and b/d are relatively
prime.

Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1
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Relatively Prime

Corollary 2: If d = GCD(a, b), then a/d and b/d are relatively
prime.

Definition: We say that integers a and b are relatively prime if
GCD(a, b) = 1

Proof: From Theorem 2, there exists integers x and y such
that

ax + by = d
Then

a
d

x +
b
d

y = 1

It follows from Corollary 1 that GCD(a/d , b/d) | 1, and
therefore, GCD(a/d , b/d) = 1.

■



Kyle Berney – Ch 4.3: Primes and Greatest Common Divisors 9 - 1

Application to Modular Arithmetic

Proposition 1: Let m be a positive integer and let a, b, and c
be integers. If ac ≡ bc (mod m) and GCD(c, m) = 1, then
a ≡ b (mod m)
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Application to Modular Arithmetic

Proposition 1: Let m be a positive integer and let a, b, and c
be integers. If ac ≡ bc (mod m) and GCD(c, m) = 1, then
a ≡ b (mod m)

Proof: Let m be an arbitrary positive integer and let a, b, and
c be arbitrary integers. From Theorem 3 in the lecture notes
of Chapter 4.1, ac ≡ bc (mod m) implies that
m | ac − bc = c(a − b). Since GCD(c, m) = 1, it follows from
Lemma 2 that m | a − b. Therefore, from Theorem 3 in the
lecture notes of Chapter 4.1, m | a − b implies that a ≡ b
(mod m). ■
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Fundamental Theorem of Arithmetic

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Ex:

104 = 23 · 13
105 = 3 · 5 · 7
308 = 22 · 7 · 11
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Fundamental Theorem of Arithmetic

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Ex:

104 = 23 · 13
105 = 3 · 5 · 7
308 = 22 · 7 · 11

To prove this, we need the following lemma
Lemma 3: (Euclid’s Lemma) Let a1a2 . . . an ∈ Z and p be a
prime. If p | a1a2 . . . an, then p | ai for some i = 1, 2, . . . , n
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Euclid’s Lemma

Lemma 3: (Euclid’s Lemma) Let a1, a2, . . . , an ∈ Z and p be
a prime. If p | a1a2 . . . an, then p | ai for some i = 1, 2, . . . , n
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Euclid’s Lemma

Lemma 3: (Euclid’s Lemma) Let a1, a2, . . . , an ∈ Z and p be
a prime. If p | a1a2 . . . an, then p | ai for some i = 1, 2, . . . , n

Proof: Let n and a1, a2, . . . , an be an arbitrary positive
integers and p be an arbitrary prime.
Inductive Hypothesis: Assume inductively that for all integers
k , such that 0 < k < n, P(k ) is true. In other words, If
p | a1a2 . . . ak , then p | ai for some i = 1, 2, . . . , k
Base Case: Assume n = 1.
Trivially, p | a1 implies that p | ai for i = 1.
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Euclid’s Lemma

Lemma 3: (Euclid’s Lemma) Let a1, a2, . . . , an ∈ Z and p be
a prime. If p | a1a2 . . . an, then p | ai for some i = 1, 2, . . . , n

Proof:
Inductive Case: Assume n > 1.

p | a1a2 . . . an = (a1a2 . . . an−1)an

If p | an, then we are done. Otherwise, p ∤ an and
GCD(p, an) = 1. It follows from Lemma 2 that
p | a1a2 . . . an−1. And from our inductive hypothesis, since
0 < n − 1 < n, we know that p | ai for some
i = 1, 2, . . . , n − 1. ■
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Fundamental Theorem of Arithmetic

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

Proof: Let n be an arbitrary positive integer greater than 1.
We will first show that n can be written as a product of
primes.
Inductive Hypothesis: Assume inductively that for all integers
k , such that 1 < k < n, P(k ) is true. In other words, k can be
written as a product of primes.
Base Case: Assume n = 2.
Trivially, 2 is prime and can be written as itself.

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

Proof:
Inductive Case: Assume n > 2.
If n is prime, then trivially n can written as itself.
Otherwise, n is composite and n = ab for some integers a
and b such that 1 < a < n and 1 < b < n.

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

Proof:
Inductive Case: Assume n > 1.
From our inductive hypothesis, since 1 < a < n and
1 < b < n, a and b can both be written as a product of
primes. Let a = p1p2 . . . pr and b = q1q2 . . . qs for some
positive integers r and s and primes p1, p2, . . . , pr and
q1, q2, . . . , qs. Then

n = ab = (p1p2 . . . pr )(q1q2 . . . qs)

is a product of primes.

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.
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Fundamental Theorem of Arithmetic

Proof: Next, we will show that the factorization is unique.
Assume for the sake of contradiction that there exists a
positive integer that does not have a unique factorization of
primes. From the Well-Ordering Principle, there exists a least
element n that satisfies this assumption. For some positive
integers r and s, let p1p2 . . . pr and q1q2 . . . qs be some
primes, such that

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

n = p1p2 . . . pr = q1q2 . . . qs
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Fundamental Theorem of Arithmetic

Theorem 3: (Fundamental Theorem of Arithmetic) Every
positive integer greater than 1 can be written as a product of
primes. This is unique, up to the order of factors.

Proof:
By definition of divisibility, p1 | q1q2 . . . qs. It follows from
Lemma 3 that p1 | qi for some i = 1, 2, . . . , s. Without loss of
generality, assume that p1 | q1. Since p1 and q1 are both
prime, it must be that p1 = q1. Hence, we can cancel them
out

p2 . . . pr = q2 . . . qs

We now have two distinct prime factorizations of some
integer strictly smaller than n, a contradiction since we
assumed that n was the least integer that does not have a
unique factorization of primes. ■
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Trial Division

Theorem 4: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n
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Trial Division

Theorem 4: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n

Proof: Let n be an arbitrary composite integer.
By defintion of a composite integer, n has some factor a such
that 1 < a < n. By definition of a factor,

n = ab
where b is a positive integer greater than 1. We will first show
that a ≤

√
n or b ≤

√
n.
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Trial Division

Theorem 4: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n

Proof:
Assume for the sake of contradiction that a >

√
n and

b >
√

n. Then,
ab >

√
n ·

√
n = n

A contradiction, since n = ab. Thus, a ≤
√

n or b ≤
√

n.
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Trial Division

Theorem 4: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n

Proof:
Without loss of generality, assume that a ≤

√
n. If a is prime,

then we are done. Otherwise, using Theroem 3, a can be
written as a product of primes, and consequently, n has a
prime divisor less than or equal to

√
n. ■
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Trial Division

Theorem 4: If n is a composite integer, then n has a prime
divisor less than or equal to

√
n

It follows from Theorem 4 that an integer n is prime if it is not
divisible by any prime less than or equal to

√
n

Leads to a brute-force algorithm, known as trial division

Divide n by all primes not exceeding
√

n
n is prime if it is not divisible by any of these primes (and
composite otherwise)
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Trial Division

Ex: Is 101 prime?√
101 ≈ 10.05

Primes less than or equal to
√

101 are: 2, 3, 5, and 7
2 ∤ 101 since 101/2 = 50.5
3 ∤ 101 since 101/3 ≈ 33.3
5 ∤ 101 since 101/5 = 20.2
7 ∤ 101 since 101/7 ≈ 14.4
Therefore, 101 is prime
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Finding the Prime Factorization

From Theorem 4, n has a prime factor less than or equal to√
n.

1. Staring from the smallest prime 2, find whether n has a prime
factor ≤

√
n.

2. If a prime factor p is found, then continue factoring n/p
3. Otherwise, n is prime and its factorization is itself
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Finding the Prime Factorization

1. Staring from the smallest prime 2, find whether n has a prime
factor ≤

√
n.

2. If a prime factor p is found, then continue factoring n/p
3. Otherwise, n is prime and its factorization is itself

Ex: Find prime factorization of 7007

7 | 7007 and 7007/7 = 1001
7 | 1001 and 1001/7 = 143
11 | 143 and 143/11 = 13
13 is prime
Therefore, 7007 = 7 · 7 · 11 · 13
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Applications of Factoring and Primes

Factoring and primality testing is important to cryptography

RSA encryption is based on the fact that multiplying is
much easier than factoring

Currently, there is no polynomial-time algorithm for factoring
integers
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Applications of Factoring and Primes
The greatest common divisor and least common multiple can
be found using prime factorizations

Definition: The least common multiple of the positive integers
a and b is the smallest positive integer that is divisible by
both a and b
Denoted LCM(a, b)
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Applications of Factoring and Primes
The greatest common divisor and least common multiple can
be found using prime factorizations

GCD(a, b) = pMIN(a1,b1)
1 pMIN(a2,b2)

2 . . . pMIN(an ,bn)
n

Let a = pa1
1 pa2

2 . . . pan
n and b = pb1

1 pb2
2 . . . pbn

n

Each exponent is a non-negative integer
All primes occuring in the prime factorization of either a or
b are included in both factorizations (with a 0 exponent, if
necessary)

LCM(a, b) = pMAX(a1,b1)
1 pMAX(a2,b2)

2 . . . pMAX(an ,bn)
n
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Euclid’s Theorem

Theorem 5: (Euclid’s Theorem) There are infinitely many
primes
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Euclid’s Theorem

Theorem 5: (Euclid’s Theorem) There are infinitely many
primes

Proof: Consider any arbitrary finite list of prime numbers
p1, p2, . . . , pn. We will show that there exists at least one
additional prime number not included in this list. Let
P = p1p2 . . . pn and let q = P + 1.
If q is prime, then we have found an additonal prime not in
the list.
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Euclid’s Theorem

Theorem 5: (Euclid’s Theorem) There are infinitely many
primes

Proof:
Otherwise, q is composite and there exists some prime factor
p such that p | q. If p is on our list of primes, then p | P. It
follows from Theorem 1 (statement 1.) in the lecture notes of
Chapter 4.1, that if p | q and p | P then p | q − P = 1. Since
no prime numbers divides 1, p cannot be on our list of
primes. Therefore, at least one more prime number exists
that is not in the list. ■
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Prime Number Theorem

Let π(x) be the number of prime numbers less than x
Theorem 6: (Prime Number Theorem) The ratio of π(x) and
x/ ln x approaches 1 as x grows without bounds.

lim
x→∞

π(x)
x/ ln x

= 1

It follows that a “good” approximation of π(x) is

π(x) ≈ x
ln x

“Good” approximation means that the relative error of the
approximation approaches 0 as x increases without bound


