

Ch 4.2: Integer Representations and Algorithms

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

Representations of Integers

- In everyday life, we use decimal numbers
 - Base 10
 - 10 total digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Ex: Two hundred and nine, written 209, stands for

$$2 \cdot 10^2 + 0 \cdot 10^1 + 9 \cdot 10^0$$

 Ex: Four thousand one hundred and twenty nine, written 4129, stands for

$$4 \cdot 10^3 + 1 \cdot 10^2 + 2 \cdot 10^1 + 9 \cdot 10^0$$

Representations of Integers

- Computers use binary numbers
 - Base 2
 - 2 total digits: {0, 1}
- Ex: Twenty three, written 10111, stands for

$$1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Ex: Thirty six, written 100100, stands for

$$1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$$

Representations of Integers

Theorem 1: (Basis Representation Theorem) Let b be an integer such that b > 1. For every positive integer n, there exists a unique representation

$$n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b^1 + a_0 b^0$$

where $a_k \neq 0$ and each a_i is non-negative and strictly less than b.

- Known as the representation of n to the base (or radix) b
- Written as $n = (a_k a_{k-1} ... a_1 a_0)_b$
 - The subscript b can be omitted if it is clear what the base of the number is
- Remark: We can also represent 0 by letting all the $a_i = 0$

Historical Number Systems

- Babylonains
 - Sexagesimal numbers
 - Base 60
 - We derive modern-day usage of
 - 60 seconds in a minute
 - 60 minutes in an hour
 - 360 degrees in a circle
- Mayans
 - Vigesimal numbers
 - Base 20

Octal and Hexadecimal Representation

- Representing large numbers in binary can result in a large number of digits
 - Octal (base 8)
 - Hexadecimal (base 16)
- Allow for easy conversion from/into binary representation
 - Every 3 binary digits correspond to a single octal digit
 - Every 4 binary digits correspond to a single hexadecimal digit

Octal Representation

- Octal Numbers
 - Base 8
 - 8 total digits: {0, 1, 2, 3, 4, 5, 6, 7}
- Ex: Three hundred and seventy, written (101110010)₂,

•
$$(101)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5$$

•
$$(110)_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6$$

•
$$(010)_2 = 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 2$$

$$(101110010)_2 = (562)_8$$

Octal Representation

- Octal Numbers
 - Base 8
 - 8 total digits: {0, 1, 2, 3, 4, 5, 6, 7}
- Ex: Two hundred and eighty two, written (432)₈,

•
$$4 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = (100)_2$$

$$3 = 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = (011)_2$$

$$2 = 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = (010)_2$$

$$(432)_8 = (100011010)_2$$

Hexadecimal Representation

- Hexadecimal Numbers
 - Base 16
 - 16 total digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*}
- Additional digits:
 - A = 10
 - B = 11
 - C = 12
 - D = 13
 - E = 14
 - F = 15

Hexadecimal Representation

- Hexadecimal Numbers
 - Base 16
 - 16 total digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*}
- Ex: Three thousand and fourteen, written (101111000110)₂,

•
$$(1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11 = B$$

•
$$(1100)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 12 = C$$

•
$$(0110)_2 = 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6$$

$$(101111000110)_2 = (BC6)_{16}$$

Hexadecimal Representation

- Hexadecimal Numbers
 - Base 16
 - 16 total digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*}
- Ex: Three thousand eight hundred and eighty two, written (F2A)₁₆,

•
$$15 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = (11111)_2$$

$$2 = 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = (0010)_2$$

$$10 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = (1010)_2$$

$$(F2A)_{16} = (111100101010)_2$$

7 - 3

- To convert an integer *n* into an arbitrary base *b*:
 - Successively divide quotients by b
 - Each remainder is a (right-most) digit of the base b representation

- To convert an integer n into an arbitrary base b:
 - Successively divide quotients by b
 - Each remainder is a (right-most) digit of the base b representation
- Ex: Convert 12345 into octal (base 8)

1.
$$12345 = 8 \cdot 1543 + 1$$

2.
$$1543 = 8 \cdot 192 + 7$$

3.
$$192 = 8 \cdot 24 + 0$$

4.
$$24 = 8 \cdot 3 + 0$$

$$5. 3 = 8 \cdot 0 + 3$$

$$12345 = (30071)_8$$

- To convert an integer n into an arbitrary base b:
 - Successively divide quotients by b
 - Each remainder is a (right-most) digit of the base b representation
- Ex: Convert 177130 into hexadecimal (base 16)

1.
$$177130 = 16 \cdot 11070 + 10$$

2.
$$11070 = 16 \cdot 691 + 14$$

3.
$$691 = 16 \cdot 43 + 3$$

$$4. 43 = 16 \cdot 2 + 11$$

5.
$$2 = 16 \cdot 0 + 2$$

$$177130 = (2B3EA)_{16}$$

- To convert an integer n into an arbitrary base b:
 - Successively divide quotients by b
 - Each remainder is a (right-most) digit of the base b representation

```
BASEB(n, b)

q = n

k = 0

while q \neq 0

a_k = q \pmod{b}

q = q/b

k = k + 1

return (a_{k-1}, a_{k-2}, \dots, a_1, a_0) \triangleright (a_{k-1}a_{k-2} \dots a_1a_0)_b
```

Binary Arithmetic

- Consider the problem of adding and multiplying two integers in binary
 - Works similarly to decimal addition and multiplication

Binary Arithmetic

- Consider the problem of adding and multiplying two integers in binary
 - Works similarly to decimal addition and multiplication
- Ex: Add 1110 and 1011

	С	C			
	1	1	1	0	
+	1	0	1	1	
1	1	0	0	1	-

Binary Arithmetic

- Consider the problem of adding and multiplying two integers in binary
 - Works similarly to decimal addition and multiplication
- Ex: Multiply 110 and 101

			1	1	0
		×	1	0	1
			1	1	0
		0	0	0	
+	1	1	0		
	1	1	1	1	0