

## **Ch 4.1: Divisibility and Modular Arithmetic**

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

# Divisibility

- Let  $a, b \in \mathbb{Z}$  such that  $a \neq 0$ .
- We say a divides b, denoted a | b, if there exists an integer c such that

$$b = ac$$

or equivalently, if  $b/a \in \mathbb{Z}$ .

- When a divides b
  - a is a factor (or divisor) of b
  - b is a multiple of a
- If a does not divide b, we use the notation  $a \nmid b$

- Theorem 1: Let a, b, and c be integers, such that  $a \neq 0$ .
  - 1. If  $a \mid b$  and  $a \mid c$ , then  $a \mid (b + c)$ .
  - 2. If  $a \mid b$ , then  $a \mid bc$ , for all integers c.
  - 3. If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .

- Theorem 1: Let a, b, and c be integers, such that  $a \neq 0$ .
  - 1. If  $a \mid b$  and  $a \mid c$ , then  $a \mid (b + c)$ .
  - 2. If  $a \mid b$ , then  $a \mid bc$ , for all integers c.
  - 3. If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- Proof of 1: By definition of divisibility, there exists integers x and y such that

$$b = ax$$
 and  $c = ay$ .

Hence,

$$b+c=ax+ay=a(x+y).$$

Therefore, by definition of divisibility,  $a \mid (b + c)$ .

- Theorem 1: Let a, b, and c be integers, such that  $a \neq 0$ .
  - 1. If  $a \mid b$  and  $a \mid c$ , then  $a \mid (b + c)$ .
  - 2. If  $a \mid b$ , then  $a \mid bc$ , for all integers c.
  - 3. If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- Proof of 2: Let c be an arbitrary integer. By definition of divisibility, there exists an integers x such that

$$b = ax$$
.

Hence,

$$bc = (ax)c = a(xc)$$
.

Therefore, by definition of divisibility,  $a \mid bc$ .

- Theorem 1: Let a, b, and c be integers, such that  $a \neq 0$ .
  - 1. If  $a \mid b$  and  $a \mid c$ , then  $a \mid (b + c)$ .
  - 2. If  $a \mid b$ , then  $a \mid bc$ , for all integers c.
  - 3. If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- Proof of 3: By definition of divisibility, there exists integers x and y such that

$$b = ax$$
 and  $c = by$ .

Hence,

$$c = by = (ax)y = a(xy).$$

Therefore, by definition of divisibility,  $a \mid c$ .

• Corollary: Let a, b, and c be integers, such that  $a \neq 0$ . If  $a \mid b$  and  $a \mid c$ , then  $a \mid (bx + cy)$  for all integers x and y.

- Corollary: Let a, b, and c be integers, such that  $a \neq 0$ . If  $a \mid b$  and  $a \mid c$ , then  $a \mid (bx + cy)$  for all integers x and y.
- Proof: It follows from part 2 of Theorem 1 that a | bx and a | cy for all integers x and y. And from part 1 of Theorem 1, a | (bx + cy).

## The Division Algorithm

■ Theorem 2: Let  $a \in \mathbb{Z}$  and  $d \in \mathbb{Z}^+$ . There exists unique integers q and r, where  $0 \le r < d$ , such that

$$a = dq + r$$
.

- a is called the dividend
- d is called the divisor
- q is called the quotient
- *r* is called the remainder

## The Division Algorithm

■ Theorem 2: Let  $a \in \mathbb{Z}$  and  $d \in \mathbb{Z}^+$ . There exists unique integers q and r, where  $0 \le r < d$ , such that

$$a = dq + r$$
.

- a is called the dividend
- d is called the divisor
- q is called the quotient
- r is called the remainder
- This theorem is known as the division algorithm, despite it not being an algorithm

• Theorem 3: Let  $m \in \mathbb{Z}^+$ . The integers a and b are congruent modulo m if and only if there exists an integer k such that

$$a = b + km$$
.

Or equivalently, m is a divisor of the difference a - b and b - a.

If a is congruent to b modulo m, we write

$$a \equiv b \pmod{m}$$
.

m is called the modulus of the congruence relation

### Residue Class

- <u>Definition</u>: The set of integers congruent to a (mod m) is called the <u>residue class</u> (or <u>congruence class</u>) of a and is denoted by  $[a]_m$ .
- The elements of  $[a]_m$  are called <u>residues</u>
- The least non-negative element of [a]<sub>m</sub> is called the reduced residue of a

### Residue Class

- <u>Definition</u>: The set of integers congruent to a (mod m) is called the <u>residue class</u> (or <u>congruence class</u>) of a and is denoted by  $[a]_m$ .
- The elements of  $[a]_m$  are called <u>residues</u>
- The least non-negative element of [a]<sub>m</sub> is called the reduced residue of a
- Ex: For m = 4,

$$[8]_4 = \{\ldots, -8, -4, 0, 4, 8, \ldots\} = [0]_4$$

## Reduced Residue

• Proposition: Let  $m \in \mathbb{Z}^+$  and  $a \in \mathbb{Z}$ . The reduced residue of a modulo m is the remainder of a/m.

#### Reduced Residue

- Proposition: Let  $m \in \mathbb{Z}^+$  and  $a \in \mathbb{Z}$ . The reduced residue of a modulo m is the remainder of a/m.
- Proof: Let r be the remainder of a/m, i.e., using the division algorithm

$$a = mq + r$$

where  $0 \le r < m$ . Assume for the sake of contradiction that r is not the reduced residue of a modulo m. Hence, there must exist another member of the residue class  $[r]_m$  that is both smaller than r and non-negative.

#### Reduced Residue

- Proposition: Let  $m \in \mathbb{Z}^+$  and  $a \in \mathbb{Z}$ . The reduced residue of a modulo m is the remainder of a/m.
- Proof: Consider the next smallest member of  $[r]_m$ , which is r-m.

$$0 - m \le r - m < m - m = 0$$

A contradiction, since we assumed there existed a smaller member of  $[r]_m$  that is also non-negative. Therefore, r is the reduced residue of a modulo m.

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 1: Let m be an arbitrary positive integer and let a, b, c, and d be arbitrary integers such that  $a \equiv \pmod{m}$  and  $c \equiv d \pmod{m}$ . From Theorem 3, there exists integers x and y such that

$$a = b + xm$$

and 
$$c = d + ym$$
.

• Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,

1. 
$$a + c \equiv b + d \pmod{m}$$

- 2.  $ac \equiv bd \pmod{m}$
- 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 1: Hence,

$$a + c = (b + xm) + (d + ym)$$
  
=  $(b + d) + m(x + y)$ .

It follows from Theorem 3 that

$$a + c \equiv b + d \pmod{m}$$
.

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 2: Let m be an arbitrary positive integer and let a, b, c, and d be arbitrary integers such that  $a \equiv \pmod{m}$  and  $c \equiv d \pmod{m}$ . From Theorem 3, there exists integers x and y such that

$$a = b + xm$$

and 
$$c = d + ym$$
.

• Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,

1. 
$$a + c \equiv b + d \pmod{m}$$

- 2.  $ac \equiv bd \pmod{m}$
- 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 2: Hence,

$$a = (b + xm)(d + ym)$$

$$= bd + bym + dxm + xym^{2}$$

$$= bd + m(by + dx + xym).$$

It follows from Theorem 3 that

$$ac \equiv bd \pmod{m}$$
.

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 3: Let m be an arbitrary positive integer and let a, b, c, and d be arbitrary integers such that  $a \equiv \pmod{m}$  and  $c \equiv d \pmod{m}$ . From Theorem 3, there exists integers x and y such that

$$a = b + xm$$

and 
$$c = d + ym$$
.

Let k be an arbitrary positive integer. (If k = 0, the proof is trivial.)

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 3: Consider the identity that for any integers x and y,

$$x^{k} - y^{k}$$
  
= $(x - y)(x^{k-1} + x^{k-2}y + x^{k-3}y^{2} + \dots + xy^{k-2} + y^{k-1})$ .

Setting x = a and y = b.

- Theorem 4: Let  $m \in \mathbb{Z}^+$  and  $a, b, c, d \in \mathbb{Z}$  such that  $a \equiv b$  (mod m) and  $c \equiv d$  (mod m). Then,
  - 1.  $a + c \equiv b + d \pmod{m}$
  - 2.  $ac \equiv bd \pmod{m}$
  - 3.  $a^k \equiv b^k \pmod{m}$ , for all  $k \in \mathbb{N}$
- Proof of 3: Consider the identity that for any integers x and y,

$$a^{k} - b^{k}$$

$$= (a - b)(a^{k-1} + a^{k-2}b + a^{k-3}b^{2} + \dots + ab^{k-2} + a^{k-1})$$

$$= xm(a^{k-1} + a^{k-2}b + a^{k-3}b^{2} + \dots + ab^{k-2} + a^{k-1}).$$

It follows from Theorem 3 that  $a^k \equiv b^k \pmod{m}$ .

- Corollary: Let  $m \in \mathbb{Z}^+$  and let  $a, b \in \mathbb{Z}$ . Then,
  - 1.  $(a+b) \pmod{m} \equiv (a \pmod{m}) + (b \pmod{m}) \pmod{m}$
  - 2.  $ab \pmod{m} \equiv (a \pmod{m})(b \pmod{m}) \pmod{m}$