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Divisibility

Let a, b ∈ Z such that a ̸= 0.
We say a divides b, denoted a | b, if there exists an integer c
such that

b = ac
or equivalently, if b/a ∈ Z.

When a divides b

a is a factor (or divisor) of b
b is a multiple of a

If a does not divide b, we use the notation a ∤ b
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Properties of Divisibility

Theorem 1: Let a, b, and c be integers, such that a ̸= 0.

1. If a | b and a | c, then a | (b + c).
2. If a | b, then a | bc, for all integers c.
3. If a | b and b | c, then a | c.
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Properties of Divisibility

Theorem 1: Let a, b, and c be integers, such that a ̸= 0.

1. If a | b and a | c, then a | (b + c).
2. If a | b, then a | bc, for all integers c.
3. If a | b and b | c, then a | c.

Proof of 1: By definition of divisibility, there exists integers x
and y such that

b = ax and c = ay .
Hence,

b + c = ax + ay = a(x + y ) .

Therefore, by definition of divisibility, a | (b + c).
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Properties of Divisibility

Theorem 1: Let a, b, and c be integers, such that a ̸= 0.

1. If a | b and a | c, then a | (b + c).
2. If a | b, then a | bc, for all integers c.
3. If a | b and b | c, then a | c.

Proof of 2: Let c be an arbitrary integer. By definition of
divisibility, there exists an integers x such that

b = ax .
Hence,

bc = (ax)c = a(xc) .

Therefore, by definition of divisibility, a | bc.
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Properties of Divisibility

Theorem 1: Let a, b, and c be integers, such that a ̸= 0.

1. If a | b and a | c, then a | (b + c).
2. If a | b, then a | bc, for all integers c.
3. If a | b and b | c, then a | c.

Proof of 3: By definition of divisibility, there exists integers x
and y such that

b = ax and c = by .
Hence,

c = by = (ax)y = a(xy ) .

Therefore, by definition of divisibility, a | c.
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Properties of Divisibility

Corollary: Let a, b, and c be integers, such that a ̸= 0. If a | b
and a | c, then a | (bx + cy) for all integers x and y .
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Properties of Divisibility

Corollary: Let a, b, and c be integers, such that a ̸= 0. If a | b
and a | c, then a | (bx + cy) for all integers x and y .

Proof: It follows from part 2 of Theorem 1 that a | bx and
a | cy for all integers x and y . And from part 1 of Theorem 1,
a | (bx + cy ).
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The Division Algorithm

Theorem 2: Let a ∈ Z and d ∈ Z+. There exists unique
integers q and r , where 0 ≤ r < d , such that

a = dq + r .

a is called the dividend
d is called the divisor
q is called the quotient
r is called the remainder
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The Division Algorithm

Theorem 2: Let a ∈ Z and d ∈ Z+. There exists unique
integers q and r , where 0 ≤ r < d , such that

a = dq + r .

This theorem is known as the division algorithm, despite it
not being an algorithm

a is called the dividend
d is called the divisor
q is called the quotient
r is called the remainder
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Modular Arithmetic

Theorem 3: Let m ∈ Z+. The integers a and b are congruent
modulo m if and only if there exists an integer k such that

a = b + km .
Or equivalently, m is a divisor of the difference a − b and
b − a.

If a is congruent to b modulo m, we write
a ≡ b (mod m) .

m is called the modulus of the congruence relation
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Residue Class

Definition: The set of integers congruent to a (mod m) is
called the residue class (or congruence class) of a and is
denoted by [a]m.

The elements of [a]m are called residues
The least non-negative element of [a]m is called the
reduced residue of a
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Residue Class

Definition: The set of integers congruent to a (mod m) is
called the residue class (or congruence class) of a and is
denoted by [a]m.

The elements of [a]m are called residues
The least non-negative element of [a]m is called the
reduced residue of a

Ex: For m = 4,

[8]4 = {. . . ,−8,−4, 0, 4, 8, . . .} = [0]4
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Reduced Residue

Proposition: Let m ∈ Z+ and a ∈ Z. The reduced residue of
a modulo m is the remainder of a/m.
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Reduced Residue

Proposition: Let m ∈ Z+ and a ∈ Z. The reduced residue of
a modulo m is the remainder of a/m.

Proof: Let r be the remainder of a/m, i.e., using the division
algorithm

a = mq + r
where 0 ≤ r < m. Assume for the sake of contradiction that
r is not the reduced residue of a modulo m. Hence, there
must exist another member of the residue class [r ]m that is
both smaller than r and non-negative.
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Reduced Residue

Proposition: Let m ∈ Z+ and a ∈ Z. The reduced residue of
a modulo m is the remainder of a/m.

Proof: Consider the next smallest member of [r ]m, which is
r − m.

0 − m ≤ r − m < m − m = 0
A contradiction, since we assumed there existed a smaller
member of [r ]m that is also non-negative. Therefore, r is the
reduced residue of a modulo m. ■
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 1: Let m be an arbitrary positive integer and let a, b,
c, and d be arbitrary integers such that a ≡ (mod m) and
c ≡ d (mod m). From Theorem 3, there exists integers x
and y such that

a = b + xm

and c = d + ym .
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 1: Hence,
a + c = (b + xm) + (d + ym)

= (b + d) + m(x + y ) .
It follows from Theorem 3 that

a + c ≡ b + d (mod m) .
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 2: Let m be an arbitrary positive integer and let a, b,
c, and d be arbitrary integers such that a ≡ (mod m) and
c ≡ d (mod m). From Theorem 3, there exists integers x
and y such that

a = b + xm

and c = d + ym .
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 2: Hence,
a = (b + xm)(d + ym)

= bd + bym + dxm + xym2

= bd + m(by + dx + xym) .
It follows from Theorem 3 that

ac ≡ bd (mod m) .
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 3: Let m be an arbitrary positive integer and let a, b,
c, and d be arbitrary integers such that a ≡ (mod m) and
c ≡ d (mod m). From Theorem 3, there exists integers x
and y such that

a = b + xm

and c = d + ym .
Let k be an arbitrary positive integer. (If k = 0, the proof is
trivial.)
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 3: Consider the identity that for any integers x and y ,

xk − yk

=(x − y )(xk−1 + xk−2y + xk−3y2 + . . . + xyk−2 + yk−1) .

Setting x = a and y = b.
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Modular Arithmetic

Theorem 4: Let m ∈ Z+ and a, b, c, d ∈ Z such that a ≡ b
(mod m) and c ≡ d (mod m). Then,

1. a + c ≡ b + d (mod m)
2. ac ≡ bd (mod m)
3. ak ≡ bk (mod m), for all k ∈ N

Proof of 3: Consider the identity that for any integers x and y ,

ak − bk

=(a − b)(ak−1 + ak−2b + ak−3b2 + . . . + abk−2 + ak−1)

=xm(ak−1 + ak−2b + ak−3b2 + . . . + abk−2 + ak−1) .

It follows from Theorem 3 that ak ≡ bk (mod m).
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Modular Arithmetic

Corollary: Let m ∈ Z+ and let a, b ∈ Z. Then,

1. (a + b) (mod m) ≡ (a (mod m)) + (b (mod m)) (mod m)
2. ab (mod m) ≡ (a (mod m))(b (mod m)) (mod m)


