

Ch 3.3: Complexity of Algorithms

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Kyle Berney – Ch 3.3: Complexity of Algorithms

Analyzing Algorithms

- Analyzing an algorithm means predicting the resources that the algorithm requires
 - Memory
 - Communication bandwidth
 - Power consumption
 - Computation
- A model for the resources of a particular technology is needed

Random-Access Machine (RAM) Model

- Instructions are executed sequentially
- Includes common instructions for modern computers:
 - Arithmetic operations (add, subtract, multiply, divide, remainder, floor, ceiling)
 - Data movement (load, store, copy)
 - Control statements (conditional and unconditional branch, subroutine call, return)
- Each instruction takes a constant amount of time
- Primitive data types
 - Integers
 - Floating point (i.e., real numbers)

Time Complexity

- <u>Definition</u>: The running time (or time complexity) of an algorithm on a particular input is the number of primitive operations or "steps" executed
- Analyze the runtime of various scenarios:
 - Best-case: smallest number of operations performed
 - <u>Worst-case</u>: largest number of operations performed
 - Average-case: average number of operations performed (typically found using probabilistic analysis)
 - Expected: expected number of operations performed (randomized algorithms)

Time Complexity

- Generally concerned with finding the worst-case runtime
 - 1. Provides an upper bound on the runtime of the algorithm for arbitrary input
 - Guarantees that the algorithm will never take longer
 - 2. Worst-case may occur fairly often
 - Ex: Searching for an element that is not present
 - 3. Average-case is often roughly as bad as the worst-case

- INSERTIONSORT(A[1...n]) 1: for j = 2 to n 2: key = A[i]3: // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$ 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i+1] = key9:
- Recall: each instruction takes a constant amount of time
 - Define constants for each line
 - Count the number of times each line executes

- INSERTIONSORT(A[1...n]) 1: for j = 2 to n 2: key = A[i]3: // Insert A[j] into the sorted sequence A[1...j - 1] 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i+1] = key9:
- Line 2 executes *n* times

 $\Rightarrow c_1 n$

- INSERTIONSORT($A[1 \dots n]$) 1: for i = 2 to n 2: key = A[j]3: // Insert A[j] into the sorted sequence A[1...j - 1] 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i + 1] = kev9:
- Line 3 executes (n 1) times $\Rightarrow c_2(n - 1)$

- INSERTIONSORT($A[1 \dots n]$) 1: for j = 2 to n 2: key = A[j]3: // Insert A[j] into the sorted sequence A[1...j - 1] 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i + 1] = kev9:
- Line 5 executes (n 1) times $\Rightarrow c_3(n - 1)$

- INSERTIONSORT(A[1...n]) 1: for j = 2 to n 2: key = A[j]3: // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$ 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i+1] = key9:
- Let t_j be the number of times that Line 6 executes for a given value of j

$$\Rightarrow c_4 \sum_{j=2} t_j$$

- INSERTIONSORT($A[1 \dots n]$) 1: for i = 2 to n 2: key = A[i]3: // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$ 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i+1] = key9:
- Line 7 executes $(t_j 1)$ times for a given value of j

$$\Rightarrow c_5 \sum_{j=2} (t_j - 1)$$

- INSERTIONSORT($A[1 \dots n]$) 1: for i = 2 to n 2: key = A[j]3: // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$ 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i+1] = key9:
- Line 8 executes $(t_j 1)$ times for a given value of j

$$\Rightarrow c_6 \sum_{j=2}^{n} (t_j - 1)$$

- INSERTIONSORT($A[1 \dots n]$) 1: for i = 2 to n 2: key = A[j]3: // Insert A[j] into the sorted sequence A[1...j - 1] 4: i = i - 15: while i > 0 and A[i] > key6: A[i + 1] = A[i]7: i = i - 18: A[i + 1] = kev9:
- Line 9 executes (n 1) times $\Rightarrow c_7(n - 1)$

- Let T(n) be the runtime of insertion sort
- Sum up the runtime of each line:

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} t_j$$

+
$$c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7(n - 1)$$
.

n

The number of times Line 5 executes, t_j, depends on the input sequence

- Best-case:
 - When the array is already sorted, we always find that

 $A[i] \not> key$

the first time the while loop is executed

• Therefore,
$$t_i = 1$$

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n 1 + c_7 (n-1)$$

$$= c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 (n - 1) + c_7 (n - 1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$
= $\Theta(n)$.

- Worst-case:
 - When the array is in reverse sorted order, we always find that

A[i] > key

until $i \ge 0$ and the **while** loop terminates

• Therefore, $t_j = j$

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} j$$

+
$$c_5 \sum_{j=2}^{n} (j-1) + c_6 \sum_{j=2}^{n} (j-1) + c_7(n-1)$$

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} j$$

+
$$C_5 \sum_{j=2}^{n} (j-1) + C_6 \sum_{j=2}^{n} (j-1) + C_7(n-1)$$

$$= c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1 \right)$$

$$+ c_5 \left(\frac{n(n-1)}{2} \right) + c_6 \left(\frac{n(n-1)}{2} \right) + c_7(n-1)$$

= $\left(\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2} \right) n^2 + (c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7)n$
- $(c_2 + c_3 + c_4 + c_7) = \Theta(n^2)$.