
Kyle Berney – Ch 3.3: Complexity of Algorithms 1

Ch 3.3: Complexity of Algorithms

KYLE BERNEY

DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

ICS 141: Discrete Mathematics for Computer Science I



Kyle Berney – Ch 3.3: Complexity of Algorithms 2

Analyzing Algorithms

Analyzing an algorithm means predicting the resources that
the algorithm requires

Memory
Communication bandwidth
Power consumption
Computation

A model for the resources of a particular technology is
needed



Kyle Berney – Ch 3.3: Complexity of Algorithms 3

Random-Access Machine (RAM) Model

Instructions are executed sequentially
Includes common instructions for modern computers:

Arithmetic operations (add, subtract, multiply, divide,
remainder, floor, ceiling)
Data movement (load, store, copy)
Control statements (conditional and unconditional branch,
subroutine call, return)

Each instruction takes a constant amount of time
Primitive data types

Integers
Floating point (i.e., real numbers)



Kyle Berney – Ch 3.3: Complexity of Algorithms 4 - 1

Time Complexity

Definition: The running time (or time complexity) of an
algorithm on a particular input is the number of primitive
operations or “steps” executed

Analyze the runtime of various scenarios:

Best-case: smallest number of operations performed
Worst-case: largest number of operations performed
Average-case: average number of operations performed
(typically found using probabilistic analysis)
Expected: expected number of operations performed
(randomized algorithms)



Kyle Berney – Ch 3.3: Complexity of Algorithms 4 - 2

Time Complexity

Generally concerned with finding the worst-case runtime

1. Provides an upper bound on the runtime of the algorithm
for arbitrary input

Guarantees that the algorithm will never take longer
2. Worst-case may occur fairly often

Ex: Searching for an element that is not present
3. Average-case is often roughly as bad as the worst-case



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 1

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Recall: each instruction takes a constant amount of time

Define constants for each line
Count the number of times each line executes



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 2

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 2 executes n times
⇒ c1n



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 3

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 3 executes (n − 1) times
⇒ c2(n − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 4

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 5 executes (n − 1) times
⇒ c3(n − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 5

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Let tj be the number of times that Line 6 executes for a given
value of j

⇒ c4

n∑
j=2

tj



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 6

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 7 executes (tj − 1) times for a given value of j

⇒ c5

n∑
j=2

(tj − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 7

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 8 executes (tj − 1) times for a given value of j

⇒ c6

n∑
j=2

(tj − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 8

Insertion Sort

1: INSERTIONSORT(A[1 . . . n])
2: for j = 2 to n
3: key = A[j ]
4: // Insert A[j ] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i ] > key
7: A[i + 1] = A[i ]
8: i = i − 1
9: A[i + 1] = key

Line 9 executes (n − 1) times
⇒ c7(n − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 5 - 9

Insertion Sort

Let T (n) be the runtime of insertion sort
Sum up the runtime of each line:

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

n∑
j=2

tj

+ c5

n∑
j=2

(tj − 1) + c6

n∑
j=2

(tj − 1) + c7(n − 1) .

The number of times Line 5 executes, tj , depends on the
input sequence



Kyle Berney – Ch 3.3: Complexity of Algorithms 6

Insertion Sort

Best-case:

When the array is already sorted, we always find that

A[i ] ̸> key

the first time the while loop is executed

Therefore, tj = 1

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

n∑
j=2

1 + c7(n − 1)

= c1n + c2(n − 1) + c3(n − 1) + c4(n − 1) + c7(n − 1)

= (c1 + c2 + c3 + c4 + c7)n − (c2 + c3 + c4 + c7)

= Θ(n) .



Kyle Berney – Ch 3.3: Complexity of Algorithms 7 - 1

Insertion Sort

Worst-case:

When the array is in reverse sorted order, we always find
that

A[i ] > key

until i ̸> 0 and the while loop terminates
Therefore, tj = j

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

n∑
j=2

j

+ c5

n∑
j=2

(j − 1) + c6

n∑
j=2

(j − 1) + c7(n − 1)



Kyle Berney – Ch 3.3: Complexity of Algorithms 7 - 2

Insertion Sort

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

n∑
j=2

j

+ c5

n∑
j=2

(j − 1) + c6

n∑
j=2

(j − 1) + c7(n − 1)

= c1n + c2(n − 1) + c3(n − 1) + c4

(
n(n + 1)

2
− 1

)
+ c5

(
n(n − 1)

2

)
+ c6

(
n(n − 1)

2

)
+ c7(n − 1)

=
(c4

2
+

c5

2
+

c6

2

)
n2 + (c1 + c2 + c3 +

c4

2
− c5

2
− c6

2
+ c7)n

− (c2 + c3 + c4 + c7) = Θ(n2) .


