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Asymptotic Analysis

When analyzing algorithms, many architecture specific
parameters determine the overall runtime

The number of cycles needed to perform specific
operations

Ex: The runtime of an algorithm on a supercomputer will be
different than the runtime of the same algorithm execute on a
personal computer (PC)
Want to study the runtime of algorithms without worrying
about specific architectural dependent constants
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Asymptotic Analysis

Definition: Asymptotic analysis is a method for describing the
behavior of functions as the input size grows “large”.

Multiplicative constants and lower-order terms are
dominated by the effects of the input size

Typically, an algorithm that is asymptotically more efficent will
be the best choice

There may be better choices for “small” inputs
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Asymptotic Notation

In this section, we will introduce various asymptotic notations
The different asymptotic bounds we will use are analogous to
equality and inequality relations:

O ≈≤
Ω ≈≥
Θ ≈ =
o ≈<
ω ≈>
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Big-O Notation

Definition: The asymptotic upper bound of a function g(n),
denoted O(g(n)), is the set of functions

O(g(n)) = {f (n) : there exists positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}
Read as “Big-Oh of g of n”
Write f (n) = O(g(n)) to indicate that a function f (n) is a
member of the set O(g(n))
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Big-O Notation
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Ω Notation

Definition: The asymptotic lower bound of a function g(n),
denoted Ω(g(n)), is the set of functions

Ω(g(n)) = {f (n) : there exists positive constants c and n0

such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}
Read as “Omega of g of n”
Write f (n) = Ω(g(n)) to indicate that a function f (n) is a
member of the set Ω(g(n))
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Ω Notation
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Θ Notation

Definition: The asymptotically tight bound of a function g(n),
denoted Θ(g(n)), is the set of functions

Θ(g(n)) = {f (n) : there exists positive constants

c1, c2, and n0 such that

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}
Read as “Theta of g of n”
Write f (n) = Θ(g(n)) to indicate that a function f (n) is a
member of the set Θ(g(n))
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Θ Notation

Theorem: For any two function f (n) and g(n), we have

f (n) = Θ(g(n))
if and only if

f (n) = O(g(n))

and f (n) = Ω(g(n))
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Θ Notation
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o Notation

o(g(n)) = {f (n) : for any positive constants c

there exists a positive constant n0

such that 0 ≤ f (n) < cg(n) for all n ≥ n0}

The O and Ω bounds may or may not be asymptotically tight

2n2 = O(n2) is asymptotically tight
2n = O(n2) is not asymptotically tight

Definition:

Read as “Little-oh of g of n”
Write f (n) = o(g(n)) to indicate that a function f (n) is a
member of the set o(g(n))
Never asymptotically tight
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ω Notation

ω(g(n)) = {f (n) : for any positive constants c

there exists a positive constant n0

such that 0 ≤ cg(n) < f (n) for all n ≥ n0}

Read as “Little-omega of g of n”
Write f (n) = ω(g(n)) to indicate that a function f (n) is a
member of the set ω(g(n))
Never asymptotically tight

The O and Ω bounds may or may not be asymptotically tight

2n2 = Ω(n2) is asymptotically tight
2n3 = Ω(n2) is not asymptotically tight

Definition:
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Comparing Functions

Transitivity:

If f (n) = Θ(g(n)) and g(n) = Θ(h(n))
⇒ f (n) = Θ(h(n))
If f (n) = O(g(n)) and g(n) = O(h(n))
⇒ f (n) = O(h(n))
If f (n) = Ω(g(n)) and g(n) = Ω(h(n))
⇒ f (n) = Ω(h(n))
If f (n) = o(g(n)) and g(n) = o(h(n))
⇒ f (n) = o(h(n))
If f (n) = ω(g(n)) and g(n) = ω(h(n))
⇒ f (n) = ω(h(n))
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Comparing Functions

Reflexivity:

If f (n) = Θ(f (n))
If f (n) = O(f (n))
If f (n) = Ω(f (n))
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Comparing Functions

Symmetry:

f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n))
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Comparing Functions

Transpose Symmetry:

f (n) = O(g(n)) if and only if g(n) = Ω(f (n))
f (n) = o(g(n)) if and only if g(n) = ω(f (n))
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Common Functions and Useful Facts
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Common Functions and Useful Facts

Exponentials:

For all real constants a and b, nb = o(an)
In other words, any exponential function greater than 1
grows faster than any polynomial function

Logarithms:

For a > 0, (log n)b = o(na)
In other words, any positive polynomial function grows
faster than any polylogarithmic function

Factorials:

n! = ω(2n)
n! = o(nn)
log(n!) = Θ(n log n)


