
Kyle Berney – Ch 3.1: Algorithms 1

Ch 3.1: Algorithms

KYLE BERNEY

DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney – Ch 3.1: Algorithms 2

Algorithms

Definition: An algorithm is a finite sequence of unambiguous
(simple) instructions for performing a computation or solving
a problem
Ex:

Directions
Cooking recipes
Everyday actions

Tying your shoes
Folding clothes

Organization
Sorting playing cards

Routines
Exercise routines
Shower routines

Kyle Berney – Ch 3.1: Algorithms 3 - 1

Algorithms

Describing algorithms

Visual representations

Kyle Berney – Ch 3.1: Algorithms 3 - 2

Algorithms

Ex. Directions from POST building to Waikiki

Kyle Berney – Ch 3.1: Algorithms 3 - 3

Algorithms

Describing algorithms

Visual representations
Everyday language

Kyle Berney – Ch 3.1: Algorithms 3 - 4

Algorithms

Ex: Finding the largest element in a finite sequence of
integers.

1. Set the current maximum value equal to the first integer in
the sequence

2. Compare the next integer in the sequence and the current
maximum value

If the next integer is larger than the current maximum,
then set the current maximum equal to this integer

3. If there are more integers in the sequence, repeat step 2.
4. After there are no integers left in the sequence, the

current maximum value will be set to the largest integer in
the sequence

Kyle Berney – Ch 3.1: Algorithms 3 - 5

Algorithms

Describing algorithms

Visual representations
Everyday language
A computer language (i.e., a programming language)

Kyle Berney – Ch 3.1: Algorithms 4

Pseudocode

Instead of chosing a particular programming language, we
use pseudocode
Pseudocode:

Resembles programming languages, but is intended to be
human readable
Focuses on logic, rather than syntax
Bridges the gap between problem-solving and coding

There is not a strict standard for how to write pseudocode

Should be clear and unambiguous

Kyle Berney – Ch 3.1: Algorithms 5 - 1

Algorithms

Ex: Finding the largest element in a finite sequence of
integers.

MAX(A[1 . . . n])
max = A[1]
for i = 2 to n

if max < A[i]
max = A[i]

return max

Kyle Berney – Ch 3.1: Algorithms 5 - 2

Algorithms

Ex: Finding the largest element in a finite sequence of
integers.

MAX(A[1 . . . n])
max = A[1]
for i = 2 to n

if max < A[i]
max = A[i]

return max

Remark: In math and theoretical computer science, we
typically use 1-indexed arrays (rather than 0-indexed arrays)

Kyle Berney – Ch 3.1: Algorithms 5 - 3

Algorithms

Describing algorithms

Visual representations
Everyday language
A computer language (i.e., a programming language)

Remark: Combinations of the above can be used together

In textbooks or research papers, algorithms are described
with pseudocode, figures, and/or descriptions of the steps
When writing code, it is good practice to also include
comments describing your code

Kyle Berney – Ch 3.1: Algorithms 6

Properties of Algorithms

Input: an algorithm has input values from a specified set
Output: an algorithm produces values from a specified set
Definiteness: steps of an algorithm are defined precisely
Correctness: an algorithm should produce the correct output
values
Finiteness: an algorithm should produce the desired output
after a finite number of steps for all inputs
Effectiveness: it is possible to perform each step of an
algorithm exactly
Generality: the algorithm is applicable to all problems of the
desired form

Kyle Berney – Ch 3.1: Algorithms 7

Searching Algorithms

Searching for a particular element in a collection of elements
Problem: Given an element x and a collection of n elements,
a1, a2, . . . , an, find the location of x or determine that x is not
in the collection

Kyle Berney – Ch 3.1: Algorithms 8

Linear Search

Iterate through the n elements and check whether it is equal
to x or not

If the current element is equal to x , we return its location
and terminate the algorithm

If all elements were inspected and x has not been found, then
we return that x was not found and terminate the algorithm

LINEARSEARCH(A[1 . . . n], x)
for i = 1 to n

if x == A[i]
return i

return NOT FOUND

Kyle Berney – Ch 3.1: Algorithms 9 - 1

Binary Search

Precondition: The collection of elements is sorted (typically in
increasing order)
Compare x with the median (i.e., middle) element

If the median element is x , we return its location
If the median element is greater than x , we continue the
algorithm only on elements that are smaller than the
median element
If the median element is smaller than x , we continue the
algorithm only on elements that are greater than the
median element

Kyle Berney – Ch 3.1: Algorithms 9 - 2

Binary Search

BINARYSEARCH(A[1 . . . n], x)
lef t = 1
r ight = n
while lef t ≤ r ight

mid = ⌊(lef t + r ight)/2⌋
if x == A[mid]

return mid
else if x < A[mid]

r ight = mid − 1
else

lef t = mid + 1
return NOT FOUND

Kyle Berney – Ch 3.1: Algorithms 9 - 3

Binary Search

Question: Why is mid = ⌊(lef t + r ight)/2⌋?
The number of elements, denoted n, contained in
A[lef t . . . r ight] is:

n = r ight − lef t + 1

(Lower) median, denoted k , is defined as:

k =
⌊

n + 1
2

⌋
k -th element starting from the index lef t

(lef t − 1) +
⌊

n + 1
2

⌋
=
⌊

2lef t − 2 + (r ight − lef t + 1) + 1
2

⌋
=
⌊

r ight + lef t
2

⌋
.

Kyle Berney – Ch 3.1: Algorithms 10

Sorting Algorithms

Ordering elements in a collection of elements
Problem: Given a way to order elements (i.e., a way to
compare two elements) and a collection of n elements
a1, a2, . . . , an, rearrange the collection into a′

1, a′
2, . . . , a′

n
such that

a′
1 ≤ a′

2 ≤ . . . ≤ a′
n

Kyle Berney – Ch 3.1: Algorithms 11 - 1

Bubble Sort

1. Iterate through the array and compare adjacent elements

If the adjacent elements are out of order, swap their
positions

2. Repeat step 1. (n − 2) additonal times (i.e., in total (n − 1)
executions of step 1. are performed)

Intuition: after every execution of step 1., the larger elements
are ”bubbled” to the end of the array

After the first pass, the largest element is in A[n]
After the second pass, the second largest element is in
A[n − 1]
After the third pass, the third largest element is in A[n − 2]

...

Kyle Berney – Ch 3.1: Algorithms 11 - 2

Bubble Sort

BUBBLESORT(A[1 . . . n])
for i = 1 to n − 1

for j = 1 to n − i
if A[j] > A[j + 1]

SWAP(j , j + 1)

Kyle Berney – Ch 3.1: Algorithms 12 - 1

Insertion Sort

Intuition: Works similar to how many people sort a hand of
playing cards

1. Start with an empty hand of cards
2. Pickup a card one at a time and insert it into the correct

position in your hand

To find the correct position, compare the card with each
card already in your hand

3. Algorithm terminates when all cards have been inserted into
your hand

Kyle Berney – Ch 3.1: Algorithms 12 - 2

Insertion Sort

INSERTIONSORT(A[1 . . . n])
for j = 2 to n

key = A[j]
// Insert A[j] into the sorted sequence A[1 . . . j − 1]
i = j − 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i − 1

A[i + 1] = key

Kyle Berney – Ch 3.1: Algorithms 13

String Matching

Asks whether a particular string of characters called the
pattern, denoted P, occurs within another string T .
When the pattern P begins at position (s + 1) in the string T

We say that P occurs with shift s in T

Problem: Given a pattern P and string T , find all valid shifts
of P

Kyle Berney – Ch 3.1: Algorithms 14

Naive String Matching

Given a pattern P[1 . . .m] and a string T [1 . . . n]
For each of the n − m + 1 possible values of s

Check whether

P[1 . . .m] = T [s + 1 . . . s + m]

NAIVESTRINGMATCHING(P[1 . . .m], T [1 . . . n])
for s = 0 to n − m

j = 1
while j ≤ m and T [s + j] == P[j]

j = j + 1
if j > m

PRINT(”s is a valid shift”)

Kyle Berney – Ch 3.1: Algorithms 15

Optimization Problems

Some problems are concerned with finding a solution that
either minimizes or maximizes the value of some parameter

Known as optimization problems
Parameter that is optimized is called the objective function

Two common algorithmic approaches:

1. Greedy algorithms
2. Dynamic programming

Kyle Berney – Ch 3.1: Algorithms 16

Greedy Algorithms

A greedy algorithm always makes the choice that looks “best”
at the moment
Optimization problems can be solved using greedy
algorithms if they exhibit:

Greedy Choice Property
If the objective function is optimized locally, then it is
optimized globally
The greedy choice is always part of some optimal
solution

Optimal Substructure
An optimal solution to the problem contains optimal
solutions to the subproblems

Kyle Berney – Ch 3.1: Algorithms 17 - 1

Activity Selection

Given a set S = {a1, a2, . . . , an} of n activities.
Each activity ai has a start time si and a finish time fi where

0 ≤ si < fi < ∞
If selected, activity ai takes place during the interval [si , fi)
Activities ai and aj are compatible if [si , fi) and [sj , fj) do not
overlap

In other words, si ≥ fj or sj ≥ fi
Problem: Select a maximum-size subset of S of mutually
compatible activies

Assume that S is given such that the activities are sorted
in increasing order of finish time

f1 ≤ f2 ≤ · · · ≤ fn

Kyle Berney – Ch 3.1: Algorithms 17 - 2

Activity Selection

Ex: Consider the following activities:

{a1, a3, a6, a8} is an optimal solution
{a2, a5, a7, a9} is another optimal solution

Kyle Berney – Ch 3.1: Algorithms 17 - 3

Activity Selection

Optimal Substructure

An optimal solution to the problem contains optimal
solutions to the subproblems

Kyle Berney – Ch 3.1: Algorithms 17 - 4

Activity Selection

Proof: (Sketch)

Let Si ,j denote the set of activities that start after ai and
end before aj

Let Ai ,j be an optimal solution for Si ,j which includes some
activity ak

Now have two subproblems:
1. Find mutually compatible activities in Si ,k

2. Find mutually compatible activities in Sk ,j

Define optimal solutions to the subproblems:
1. Let Ai ,k = Ai ,j ∩ Si ,k

2. Let Ai ,k = Ai ,j ∩ Si ,k

Kyle Berney – Ch 3.1: Algorithms 17 - 5

Activity Selection

Proof: (Sketch)

Optimal solution Ai ,j can be defined as:

Ai ,j = Ai ,k ∪ {ak} ∪ Ak ,j

And the number of activities in the optimal solution is

|Ai ,j | = |Ai ,k | + 1 + |Ak ,j |
“Cut-and-paste” argument

Without loss of generality, assume some suboptimal
solution to the subproblem Si ,k , denoted A′

i ,k is used
instead of the optimal solution Ai ,k

Since |A′
i ,k | < |Ai ,k |, it contradicts the assumption that

Ai ,j is the optimal solution since we can always subtitute
Ai ,k for A′

i ,k and obtain a better solution.

Kyle Berney – Ch 3.1: Algorithms 17 - 6

Activity Selection

Greedy Choice Property

If the objective function is optimized locally, then it is
optimized globally
The greedy choice is always part of some optimal solution

Greedy Choice:

The more time left after running an activity, the more
subsequent activities we can fit into the schedule
If we choose the first activity to finish, then the most time
will be left
Since activities are sorted by fnish time, we always start
with a1 then solve the optimization problem for the
remaining time

Kyle Berney – Ch 3.1: Algorithms 17 - 7

Activity Selection

Theorem: Let Sk be the set of all activities that start after ak

finishes. If Sk is non-empty and am has the earliest finish
time in Sk , then am is included in some optimal solution

Kyle Berney – Ch 3.1: Algorithms 17 - 8

Activity Selection

Proof: (Sketch)

Let Ak be an optimal solution to Sk and let aj ∈ Ak have
the earliest finish time in Ak

If aj = am, then we are done
Otherwise, let A′

k = (Ak −{aj})∪ {am} (subtitute am for aj)
Since aj is the first activity to finish in Ak and am is the first
activity to finish in Sk

fm ≤ fj
Hence, all activities in A′

k are disjoint and is a valid
solution to Sk

Moreover, |Ak | = |A′
k |, therefore A′

k is also an optimal
solution and it includes am

Kyle Berney – Ch 3.1: Algorithms 17 - 9

Activity Selection

GREEDYACTIVITYSELECTOR(S[1 . . . n], F [1 . . . n])
A = {a1}
k = 1
for m = 2 to n

if S[m] ≥ F [k]
A = A ∪ {am}
k = m

return A

