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Cardinality of Finite and Infinite Sets

Recall that the cardinality of a set A is the number of distinct
elements in A

We can extend the notion of cardinality to infinite sets
using function mappings
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Cardinality of Finite and Infinite Sets

Recall that the cardinality of a set A is the number of distinct
elements in A

We can extend the notion of cardinality to infinite sets
using function mappings

Definition: Two sets A and B have the same cardinality if and
only if there is a bijection from A to B

Definition: The cardinality of the set A is less than or equal to
the cardinality of set B if there is a injection from A to B
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Countable Sets

Definition: A set that is either finite or has the same
cardinality as the set of positive integers is called countable

A set that is not countable is called uncountable

An infinite set that is countable has cardinality ℵ0 (“aleph
null”)
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Countable Sets

Proposition: The set of odd integers, O, is countable.
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Countable Sets

Proposition: The set of odd integers, O, is countable.

Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z+.
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Countable Sets

Proposition: The set of odd integers, O, is countable.

Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z+. Consider the function
f (n) = 2n − 1, for n ∈ Z+.



Kyle Berney – Ch 2.5: Cardinality of Sets 4 - 4

Countable Sets

Proposition: The set of odd integers, O, is countable.

Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z+. Consider the function
f (n) = 2n − 1, for n ∈ Z+.
Suppose that f (n) = f (m), then

2n − 1 = 2m − 1

⇒ n = m .
Hence, f is injective.
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Countable Sets

Proposition: The set of odd integers, O, is countable.

Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z+. Consider the function
f (n) = 2n − 1, for n ∈ Z+.
Suppose that t ∈ O, then t is 1 less than some even integer
x = 2k . Hence, t = x − 1 = 2k − 1 = f (k ) and f is a surjection.
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Countable Sets

Proposition: The set of odd integers, O, is countable.

Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z+. Consider the function
f (n) = 2n − 1, for n ∈ Z+.
We showed that f is both an injection and surjection and
therefore is a bijection. ■
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Countable Sets

An infinite set is countable if and only if it is possible to list the
elements of the set in a sequence (indexed by the positive
integers)

This defines a bijection from Z+ to the considered infinite
set



Kyle Berney – Ch 2.5: Cardinality of Sets 6 - 1

Countable Sets

Proposition: The set of all integers, Z, is countable.
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Countable Sets

Proposition: The set of all integers, Z, is countable.

Proof: We can list all integers in a sequence by starting with
0 and alternating between positive and negative integers:

0, 1,−1, 2,−2, 3,−3, 4,−4, . . . ■
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

Lemma: Every subset of a countable set is also countable.
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

Proof: (Cantor Diagonalization Argument)
Assume for the sake of contradiction that R is countable.
Consider the open interval (0, 1) which is a subset of R.
From our lemma, (0, 1) is countable and can be enumerated
in some order r1, r2, r3, . . .. Let us list the decimal
representations:
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

Proof: (Cantor Diagonalization Argument)

r1 = 0.d1,1d1,2d1,3d1,4 . . .

r2 = 0.d2,1d2,2d2,3d2,4 . . .

r3 = 0.d3,1d3,2d3,3d3,4 . . .

r4 = 0.d4,1d4,2d4,3d4,4 . . .
...

Where di ,j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

Where di ,j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We will construct a
new real number r ∈ (0, 1) such that r ̸= ri for all i ∈ Z+.

r1 = 0.d1,1d1,2d1,3d1,4 . . .

r2 = 0.d2,1d2,2d2,3d2,4 . . .

r3 = 0.d3,1d3,2d3,3d3,4 . . .

r4 = 0.d4,1d4,2d4,3d4,4 . . .
...

Proof: (Cantor Diagonalization Argument)
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

Proof: (Cantor Diagonalization Argument)
Let r = 0.d1d2d3d4 . . . where

di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} − {di ,i}
for all i ∈ Z+.
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Uncountable Sets

Proposition: The set of real numbers, R, is uncountable.

for all i ∈ Z+. Notice that r and ri disagrees at the i-th
decimal place. Therefore, r ∈ (0, 1) and r ̸= ri for all i . A
contradiciton, since we assumed that we listed all elements
in (0, 1). ■

Proof: (Cantor Diagonalization Argument)
Let r = 0.d1d2d3d4 . . . where

di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} − {di ,i}
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Results About Cardinality

Theorem: If A and B are countable sets, then A ∪ B is also
countable.
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Results About Cardinality

Theorem: If A and B are countable sets, then A ∪ B is also
countable.

Proof: Assume that A and B are arbitrary countable sets.
Assume that A and B are disjoint (if they are not disjoint, we
can replace B with B − A since A ∩ (B − A) = ∅ and
A ∪ (B − A) = A ∪ B).
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Results About Cardinality

Theorem: If A and B are countable sets, then A ∪ B is also
countable.

Proof: Assume that A and B are arbitrary countable sets.
Assume that A and B are disjoint (if they are not disjoint, we
can replace B with B − A since A ∩ (B − A) = ∅ and
A ∪ (B − A) = A ∪ B).

Case 1: Assume that A and B are both finite. Thus, A ∪ B is
also finite and therefore countable.
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Results About Cardinality

Theorem: If A and B are countable sets, then A ∪ B is also
countable.

Proof:
Case 2: Without loss of generality, assume that A is finite
with cardinality |A| = n and B is countably infinite. We list the
elements of A ∪ B as a sequence
a1, a2, a3, . . . , an, b1, b2, . . .. Thus, A ∪ B is countably infinite.
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Results About Cardinality

Theorem: If A and B are countable sets, then A ∪ B is also
countable.

Proof:
Case 3: Assume that both A and B are countably infinite. We
list the elements of A ∪ B as a sequence
a1, b1, a2, b2, a3, b3, . . .. Hence, A ∪ B is countably finite. ■
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Results About Cardinality

Theorem: If A and B are sets with |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|. In other words, if exists an injection from A to
B and from B to A then there exists a bijection between A
and B.

Proof: Out-of-scope of this course.


