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Cardinality of Finite and Infinite Sets

s Recall that the cardinality of a set A is the number of distinct
elementsin A

= We can extend the notion of cardinality to infinite sets
using function mappings
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Cardinality of Finite and Infinite Sets

s Recall that the cardinality of a set A is the number of distinct
elementsin A

= We can extend the notion of cardinality to infinite sets
using function mappings

s Definition: Two sets A and B have the same cardinality if and
only if there is a bijection from Ato B

s Definition: The cardinality of the set A is less than or equal to
the cardinality of set B if there is a injection from Ato B
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Countable Sets

= Definition: A set that is either finite or has the same
cardinality as the set of positive integers is called countable

= A set that is not countable is called uncountable

= An infinite set that is countable has cardinality Ny (“aleph
null”)
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Countable Sets

= Proposition: The set of odd integers, O, is countable.
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Countable Sets

= Proposition: The set of odd integers, O, is countable.

s Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection

between the set O and Z".
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Countable Sets

= Proposition: The set of odd integers, O, is countable.

s Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z*. Consider the function
f(n)=2n—1,forne Z~.

Kyle Berney — Ch 2.5: Cardinality of Sets



Countable Sets

= Proposition: The set of odd integers, O, is countable.

s Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z*. Consider the function
f(n)=2n—1,fornec Z~.

Suppose that f(n) = f(m), then

2n—1=2m — 1

= n=m.
Hence, f Is injective.
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Countable Sets

= Proposition: The set of odd integers, O, is countable.

s Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z*. Consider the function
f(n)=2n—1,forne Z~.

Suppose that t € O, then tis 1 less than some even integer
x =2k. Hence, t = x —1 =2k — 1 = f(k) and f is a surjection.
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Countable Sets

= Proposition: The set of odd integers, O, is countable.

s Proof: To show that the set of positive odd integers is
countable, we need to show that there exists a bijection
between the set O and Z*. Consider the function
f(n)=2n—1,forne Z~.

We showed that f is both an injection and surjection and
therefore is a bijection.
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Countable Sets

= An infinite set is countable if and only if it is possible to list the
elements of the set in a sequence (indexed by the positive
integers)

» This defines a bijection from Z* to the considered infinite
set
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Countable Sets

® Proposition: The set of all integers, Z, is countable.
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Countable Sets

® Proposition: The set of all integers, Z, is countable.

s Proof: We can list all integers in a sequence by starting with
0 and alternating between positive and negative integers:

0,1,—1,2,—-2,3,-3,4, 4, ... H
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

s Lemma: Every subset of a countable set is also countable.
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

= Proof: (Cantor Diagonalization Argument)
Assume for the sake of contradiction that IR is countable.
Consider the open interval (0, 1) which is a subset of IR.
From our lemma, (0, 1) is countable and can be enumerated
in some order ry, >, I3, . . .. Let us list the decimal
representations:
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

= Proof: (Cantor Diagonalization Argument)
ry =0.011di 2013014 ...
ro =0.051002003054 ...
r3 =0.031d32033054 ...
ry =0.04 1040043044 ...

Where d;; € {0,1,2,3,4,5,6,7,8,9}.
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

= Proof: (Cantor Diagonalization Argument)
ry =0.011di 2013014 ...
ro =0.051002003054 ...
r3 =0.031d32033054 ...
ry =0.04 1040043044 ...

Where d;; € {0,1,2,3,4,5,6,7,8,9}. We will construct a
new real number r € (0,1) such that r = r; for all i € Z*.
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

= Proof: (Cantor Diagonalization Argument)
Let r = 0.4, d2d3d4 ... Where

dl = {05 1525 3545 55 65 75 85 9} T {dl,l}
foralli € Z*.
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Uncountable Sets

» Proposition: The set of real numbers, IR, is uncountable.

= Proof: (Cantor Diagonalization Argument)
Let r = 0.4, d2d3d4 ... Where

dl = {05 1 ) 25 35 45 55 65 75 85 9} T {dl,l}
for all i € Z*. Notice that r and r; disagrees at the i-th

decimal place. Therefore, r € (0,1)and r # r; for all i. A
contradiciton, since we assumed that we listed all elements
in(0,1). W
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Results About Cardinality

s [Theorem: If A and B are countable sets, then AU B is also
countable.
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Results About Cardinality

s [Theorem: If A and B are countable sets, then AU B is also
countable.

= Proof: Assume that A and B are arbitrary countable sets.
Assume that A and B are disjoint (if they are not disjoint, we
can replace B with B — A since AN (B — A) = () and
AU(B— A =AUB).
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Results About Cardinality

s [Theorem: If A and B are countable sets, then AU B is also
countable.

= Proof: Assume that A and B are arbitrary countable sets.
Assume that A and B are disjoint (if they are not disjoint, we
can replace B with B — A since AN (B — A) = () and
AU(B— A =AUB).

Case 1: Assume that A and B are both finite. Thus, AU B is
also finite and therefore countable.
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Results About Cardinality

s [Theorem: If A and B are countable sets, then AU B is also
countable.

s Proof:
Case 2: Without loss of generality, assume that A is finite
with cardinality |A| = n and B is countably infinite. We list the
elements of AU B as a sequence
ai, as, as,...,an, by, bo,.... Thus, AU B is countably infinite.
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Results About Cardinality

s [Theorem: If A and B are countable sets, then AU B is also
countable.

s Proof:
Case 3: Assume that both A and B are countably infinite. We
list the elements of AU B as a sequence
ai, by, as, bo, as, bs, . ... Hence, AU B is countably finite. B
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Results About Cardinality

s Theorem: If A and B are sets with |A| < |B| and |B| < |A]|,
then |A| = |B|. In other words, if exists an injection from A to

B and from B to A then there exists a bijection between A
and B.

s Proof: Out-of-scope of this course.
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