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Sequences

s Definition: A sequence is a function from the subset of the
set of integers ({0,1,2,...}or{1,2,3,...})toaset S.

= Represents an ordered list

s Denote the n-th term of the sequence as a,

= EX:

= Finite Sequence:
« 1,2,3,5,8
= Infinite Sequence:
« a,=3"
« 1,3,9,27,81, ...
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Geometric Progression

m leta,relR
= Definition: A geometric progression is a sequence of the
form, ar”:

a, ar,ar?, ...
® gis the initial term
® ris the common ratio
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Geometric Progression

m leta,relR
= Definition: A geometric progression is a sequence of the
form, ar”:

a, ar, ar?,
® gis the initial term
® ris the common ratio

s Ex:

» bp=(—1)"a=1,r=—1
1, —1,1,—1,1,...

s c,=2-5"a=2,r=5
2,10, 50, 250, 1250, . ..

s d,=6- 1/3”,a=6,r=1/3

2 2
6,2,2,2, 2, ...
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Arithmetic Progression

m leta, d e R
= Definition: A arithmetic progression is a sequence of the
form, a + nd-:

aa+d,a+2d,...
® ais the initial term

s d is the common difference
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Arithmetic Progression

m leta, d e R
= Definition: A arithmetic progression is a sequence of the
form, a + nd-:

aa+d,a+2d,...
® ais the initial term

s d is the common difference
= EX:
o Sn=_1 +4n,a=_1,d=4
—1,3,7,11, ...
s {,=7—3n,a=7,d=3
2.4.1, -2, ...
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Strings

= A string of length nis a finite sequence
d{dsas ... an

= The empty string, denoted A, is a string with no terms
= Length O

s EX:

= (Recall from Ch. 1) Bitstrings: 01001100
= Strings: abcd
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Recurrence Relations

= Method for defining sequences by:

1. Providing one or more initial terms
2. Rule for determining subsequent terms from terms that
preceed it

s Ex:

s =2
a,=4a,_1+3forn=1,2,3,...
2,5,8,11,14, ...
a =3
a =95
a,=4an,_1 — anp_oforn=2,3,4,...
3,9,2,—3,—5,—-2,...
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Fibonacci Sequence

= Defined recursively:
a FO = O
o F1 = 1
0 F,,=F,,_1+Fn_2,forn=2,3,4,...

2 0,1,2,3,5,8,13,...
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Fibonacci Sequence

= Defined recursively:

s =0
. F=1
. Fn=Fn—1+Fn—25forn=253=4""

2 0,1,2,3,5,8,13,...

= Famous and useful sequence for many fields:

= Golden Ratio ¢ = 1+v5 ~ 1.618

2

Fn.
im 21— ¢

n—oo Fp,

= Many artists and architects believe that this ratio is
aesthetically pleasing
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Fibonacci Sequence

= Defined recursively:

s =0
. F=1
. Fn=Fn—1+Fn—25forn=253=4""

2 0,1,2,3,5,8,13,...

= Famous and useful sequence for many fields:

» Spiral patterns in nature (e.g., flower petals, sunflowers,
pinecones, and nautilus shells) follow Fibonacci-like
growth (logarithmic spirals)
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Fibonacci Sequence

= Defined recursively:

s =0
. F=1
. Fn=Fn—1+Fn—25forn=253=4"“

2 0,1,2,3,5,8,13,...

= Famous and useful sequence for many fields:

= Predict population growth (e.g., rabbits, population of
major cities)
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Fibonacci Sequence

= Defined recursively:

s =0
. F=1
. Fn=Fn—1+Fn—25forn=2=3=4"“

2 0,1,2,3,5,8,13,...

= Famous and useful sequence for many fields:
= Used in computer science for Fibonacci Heaps
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Closed Formula for Recurrence Relations

s We say that we have solved a recurrence relation when we
find an explicit formula, called the closed formula, for the
terms of the sequence

s EX: Closed formula for the Fibionacci Sequence

F o (1+VE) — (1 - VB

2n, /5

= We can prove the correctness of closed formulas using proof
by induction (Chapter 5)
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Summations

= The addition of terms in a sequence is denoted as:
n
Zak=ao+a1 +ad>+ ...+ ap
k=0
= |n this example,

= K is the index of summation
= 0 is the lower limit

= nis the upper limit

s Summations follow the usual laws of arithmetic

n

n n
D (axk+byd)=ay xc+bd v
k=0 k=0

k=0
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Nested Summations

= Nested summations arise in many contexts

= Analysis of nested loops
e Evaluate the summations from the inner-most outwards

s Ex:

=6+12+18+24
=60
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Arithmetic Series

@ [he arithmetic series is the summation

n
§2k=1+2+3+”.+n
k=1

n(n+1)
2
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Sum of Squares and Cubes

= The sum of squares is

n
Zk2=1+4+9+...+n2
k=1

nn+1)(2n+1)
6

@ The sum of cubes is

n
Zk3=1+8+27+...+n3
k=1

nF(n+1)>2
4
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Geometric Series

s For x € IR such that x = 1, the geometric (or exponential)
series is

n
g X =1+ x+x%+... +x"
k=0

Xn+1 — 1
X — 1
= When the upper limite is infinite and |x| < 1, we have the
infinite decreasing geometric series

= 1
;Xk=1—x
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Harmonic Series

s For n € Z*, the n-th harmonic number is

1T 1 1 1
Hi=1+—-—+—-+—-—+...+—
2 3 4 n

71
=ZE
k=1

=Inn+ O(1)

= Asymptotic notations in Chapter 3
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Integrating and Differentiating Series

= Additional formulas can be derived by integrating or
differentiating previous formulas

= By differentiating both sides of the infinite geometric series
and multiplying by x

X
(1 =x)?%

for [x| < 1
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Telescoping Series

= Consider the following series

s Each of the terms ay, a», ..., a,—1 Is added in exactly once
and subtracted out exactly once
s Called a telescoping series
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Telescoping Series
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Products

= The product of terms in a sequence is denoted as:

n
Hak=a1-ag-ag-...-an
k=1
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Telescoping Series of Products

s [he denominator and numerator of subsequent terms cancel
each other out
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