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Sequences

Definition: A sequence is a function from the subset of the
set of integers ({0, 1, 2, . . . } or {1, 2, 3, . . . }) to a set S.

Represents an ordered list

Denote the n-th term of the sequence as an

Ex:

Finite Sequence:
1, 2, 3, 5, 8

Infinite Sequence:
an = 3n

1, 3, 9, 27, 81, . . .
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Geometric Progression

Let a, r ∈ R

Definition: A geometric progression is a sequence of the
form, arn:

a, ar , ar2, . . .
a is the initial term
r is the common ratio
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Geometric Progression

Let a, r ∈ R

Definition: A geometric progression is a sequence of the
form, arn:

a, ar , ar2, . . .

Ex:

bn = (−1)n, a = 1, r = −1
1,−1, 1,−1, 1, . . .

cn = 2 · 5n, a = 2, r = 5
2, 10, 50, 250, 1250, . . .

dn = 6 · (1/3)n, a = 6, r = 1/3
6, 2, 2

3 , 2
9 , 2

27 , . . .

a is the initial term
r is the common ratio
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Arithmetic Progression

Let a, d ∈ R

Definition: A arithmetic progression is a sequence of the
form, a + nd :

a, a + d , a + 2d , . . .
a is the initial term
d is the common difference
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Arithmetic Progression

Let a, d ∈ R

Definition: A arithmetic progression is a sequence of the
form, a + nd :

a, a + d , a + 2d , . . .

Ex:

sn = −1 + 4n, a = −1, d = 4
−1, 3, 7, 11, . . .

tn = 7 − 3n, a = 7, d = 3
2, 4, 1,−2, . . .

a is the initial term
d is the common difference
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Strings

A string of length n is a finite sequence

a1a2a3 . . . an

The empty string, denoted λ, is a string with no terms

Length 0

Ex:

(Recall from Ch. 1) Bitstrings: 01001100
Strings: abcd
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Recurrence Relations

Method for defining sequences by:

1. Providing one or more initial terms
2. Rule for determining subsequent terms from terms that

preceed it

Ex:

a0 = 2
an = an−1 + 3 for n = 1, 2, 3, . . .

2, 5, 8, 11, 14, . . .
a0 = 3
a1 = 5
an = an−1 − an−2 for n = 2, 3, 4, . . .

3, 5, 2,−3,−5,−2, . . .
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Fibonacci Sequence

Defined recursively:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . .

0, 1, 2, 3, 5, 8, 13, . . .
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Fibonacci Sequence

Defined recursively:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . .

0, 1, 2, 3, 5, 8, 13, . . .

Famous and useful sequence for many fields:

Golden Ratio ϕ = 1+
√

5
2 ≈ 1.618

lim
n→∞

Fn+1

Fn
= ϕ

Many artists and architects believe that this ratio is
aesthetically pleasing
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Fibonacci Sequence

Defined recursively:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . .

0, 1, 2, 3, 5, 8, 13, . . .

Famous and useful sequence for many fields:

Spiral patterns in nature (e.g., flower petals, sunflowers,
pinecones, and nautilus shells) follow Fibonacci-like
growth (logarithmic spirals)
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Fibonacci Sequence

Defined recursively:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . .

0, 1, 2, 3, 5, 8, 13, . . .

Famous and useful sequence for many fields:

Predict population growth (e.g., rabbits, population of
major cities)
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Fibonacci Sequence

Defined recursively:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . .

0, 1, 2, 3, 5, 8, 13, . . .

Famous and useful sequence for many fields:

Used in computer science for Fibonacci Heaps
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Closed Formula for Recurrence Relations

We say that we have solved a recurrence relation when we
find an explicit formula, called the closed formula, for the
terms of the sequence

Ex: Closed formula for the Fibionacci Sequence

Fn =
(1 +

√
5)n − (1 −

√
5)n

2n
√

5

We can prove the correctness of closed formulas using proof
by induction (Chapter 5)
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Summations

The addition of terms in a sequence is denoted as:
n∑

k=0

ak = a0 + a1 + a2 + . . . + an

In this example,

k is the index of summation
0 is the lower limit
n is the upper limit

Summations follow the usual laws of arithmetic
n∑

k=0

(axk + byk ) = a
n∑

k=0

xk + b
n∑

k=0

yk
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Nested Summations

Nested summations arise in many contexts

Analysis of nested loops

Evaluate the summations from the inner-most outwards

Ex:
4∑

i=1

3∑
j=1

i j =
4∑

i=1

(i + 2i + 3i)

=
4∑

i=1

6i

= 6 + 12 + 18 + 24

= 60
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Arithmetic Series

The arithmetic series is the summation

n∑
k=1

k = 1 + 2 + 3 + . . . + n

=
n(n + 1)

2
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Sum of Squares and Cubes

The sum of squares is

n∑
k=1

k2 = 1 + 4 + 9 + . . . + n2

=
n(n + 1)(2n + 1)

6
The sum of cubes is

n∑
k=1

k3 = 1 + 8 + 27 + . . . + n3

=
n2(n + 1)2

4
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Geometric Series

For x ∈ R such that x ̸= 1, the geometric (or exponential)
series is

n∑
k=0

xk = 1 + x + x2 + . . . + xn

=
xn+1 − 1

x − 1
When the upper limite is infinite and |x | < 1, we have the
infinite decreasing geometric series

∞∑
k=0

xk =
1

1 − x
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Harmonic Series

For n ∈ Z+, the n-th harmonic number is

Hn = 1 +
1
2

+
1
3

+
1
4

+ . . . +
1
n

=
n∑

k=1

1
k

= ln n + O(1)

Asymptotic notations in Chapter 3
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Integrating and Differentiating Series

Additional formulas can be derived by integrating or
differentiating previous formulas
By differentiating both sides of the infinite geometric series
and multiplying by x

∞∑
k=0

kxk =
x

(1 − x)2 , for |x | < 1
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Telescoping Series

Consider the following series
n∑

k=1

(ak − ak−1)

= (a1 − a0) + (a2 − a1) + (a3 − a2) + . . . + (an − an−1)

= an − a0

Each of the terms a1, a2, . . . , an−1 is added in exactly once
and subtracted out exactly once
Called a telescoping series
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Telescoping Series

Ex: n−1∑
k=1

1
k (k + 1)

=
n−1∑
k=1

(
k + 1

k (k + 1)
− k

k (k + 1)

)

=
n−1∑
k=1

(
1
k
− 1

k + 1

)
=
(

1 − 1
2

)
+
(

1
2
− 1

3

)
+ . . . +

(
1

n − 1
− 1

n

)
=1 − 1

n



Kyle Berney – Ch 2.4: Sequences and Summations 17

Products

The product of terms in a sequence is denoted as:
n∏

k=1

ak = a1 · a2 · a3 · . . . · an
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Telescoping Series of Products

n∏
k=1

(
k

k + 1

)
=

1
2
· 2

3
· . . . · n − 1

n

=
1
n

The denominator and numerator of subsequent terms cancel
each other out


