

Ch 2.3: Functions

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Functions

- Let *A* and *B* be nonempty sets
- <u>Definition</u>: A <u>function</u> *f* from *A* to *B*, denoted $f : A \rightarrow B$, is an assignment of exactly one element of *B* to each element of *A*.
- We write f(a) = b if b is the unique element of B assigned by the function f to the element of a of A
- Remark: Functions are also called <u>mappings</u> or <u>transformations</u>
 - We say "f maps A to B"

Terminology

- Let $f : A \rightarrow B$
- A is the domain of f
- *B* is the <u>codomain</u> of *f*

Terminology

- Let $f : A \rightarrow B$
- A is the domain of f
- *B* is the <u>codomain</u> of *f*
- If f(a) = b for $a \in A$ and $b \in B$
- *b* is the image of *a*
- *a* is the preimage of *b*

Terminology

- Let $f : A \rightarrow B$
- A is the domain of f
- B is the <u>codomain</u> of f
- If f(a) = b for $a \in A$ and $b \in B$
- *b* is the image of *a*
- *a* is the preimage of *b*
- The range (or image) of f is the set of all images of $a \in A$.
 - Remark: The range of f is always a subset of the codomain
 - Codomain is the set of all possible values of *f*
 - Range is the set of all actual values of *f*

Equality of Functions

- Two functions f and g are equal, denoted f = g, if they have
 - The same domain
 - The same codomain
 - Map each element of their domain to the same element in their codomain

• For
$$f : A \rightarrow B$$
 and $g : A \rightarrow B$

$$f = g \iff \forall a \in A(f(a) = g(a))$$

Real-valued and Integer-valued Functions

- <u>Definition</u>: A function is called <u>real-valued</u> (respectively integer-valued) if its codomain is \mathbb{R} (respectively \mathbb{Z})
- The term "respectively" (or abbreviated as "resp.") is commonly used in mathmatical writing
 - Allows the writer to make several statements simultaneously that have the same form, but with a few words different

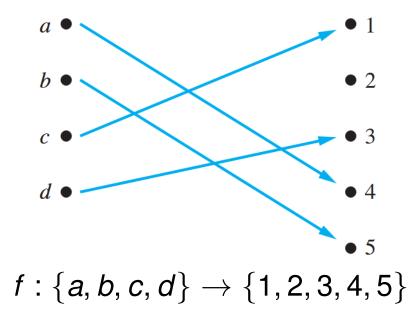
Real-valued and Integer-valued Functions

- <u>Definition</u>: A function is called <u>real-valued</u> (respectively integer-valued) if its codomain is \mathbb{R} (respectively \mathbb{Z})
- Real-valued and integer-valued functions with the same domain can be added or multiplied
- Let f_1 and f_2 be functions from A to \mathbb{R} (or \mathbb{Z})
- For all $x \in A$

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(f_1 \cdot f_2)(x) = f_2(x) \cdot f_2(x)$$

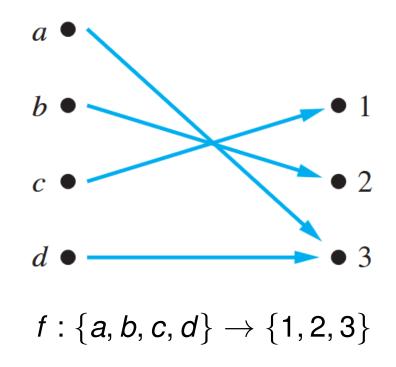
One-to-One

- <u>Definition</u>: A function *f* is <u>one-to-one</u> if and only if for all values of *a* and *b* in the domain of *f*, $f(a) = f(b) \Rightarrow a = b$.
 - Using the contrapositive, $a \neq b \Rightarrow f(a) \neq f(b)$
- f is one-to-one if it never assigns the same value to two different domain elements
- A function that is one-to-one is also said to be injective



Onto

- <u>Definition</u>: A function $f : A \to B$ is <u>onto</u> if and only if $\forall b \in B \exists a \in A(f(a) = b)$
- f is onto if every element of its codomain is assigned to at least one element of its domain
- A function that is onto is also said to be a surjection

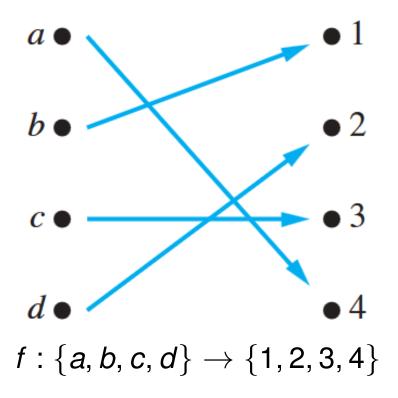


Bijection

 <u>Definition</u>: A function *f* is a <u>bijection</u> if it is both injective and surjective.

 $\forall b \in B \exists ! a \in A(f(a) = b)$

 f is a bijection if every element of its codomain is assigned to exactly one element of its domain



Summary

- Let $f : A \rightarrow B$
- To show that f is injective
 - For arbitrary $x, y \in A$, show that $f(x) = f(y) \Rightarrow x = y$
- To show that f is not injective
 - Find $x, y \in A$ such that $x \neq y$ and f(x) = f(y)
- To show that f is surjective
 - For arbitrary $y \in B$, find $x \in A$ such that f(x) = y
- To show that f is not surjective
 - Find $y \in B$ such that $\forall x \in A(f(x) \neq y)$.

Identity Function

• The identity function on a set A is the function $\iota_A : A \to A$, such that for all $x \in A$,

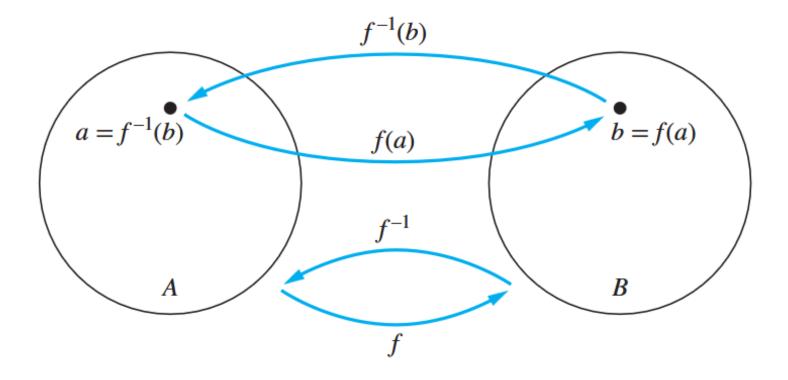
 $\iota_A(x)=x$

- Assigns each element to itself
- Trivially, ι_A is a bijection
- Remark: ι is the Greek letter iota

Inverse Function

• <u>Definition</u>: Let $f : A \to B$ be a bijection. The <u>inverse function</u>, denoted f^{-1} , is the function that assigns an element $b \in B$ to the unique element $a \in A$ such that f(a) = b

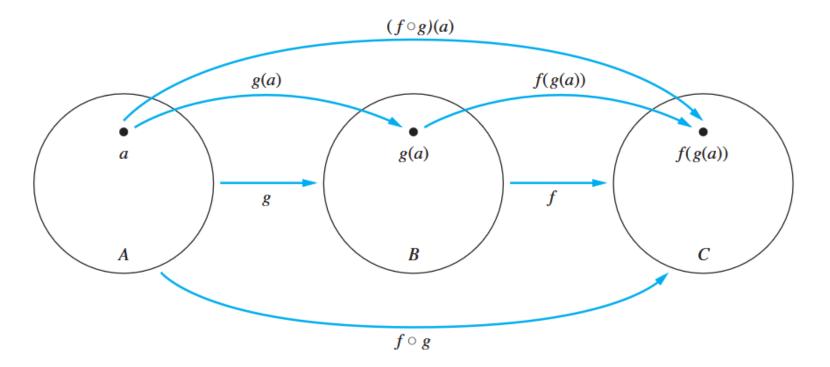
$$f^{-1}(b) = a \iff f(a) = b$$



Compositions of Functions

- Let $g : A \rightarrow B$ and $f : B \rightarrow C$
- <u>Definition</u>: The composition of the functions *f* and *g*, denoted $f \circ g$, is the function from *A* to *C* defined as for all $a \in A$

$$(f \circ g)(a) = f(g(a))$$

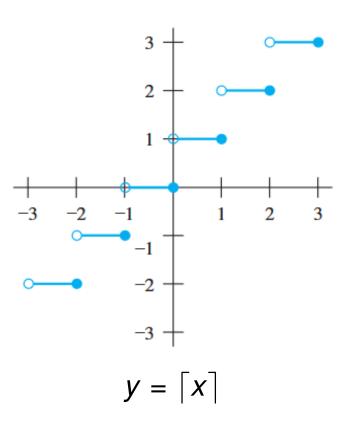


Graph of Functions

- Let $f : A \rightarrow B$
- <u>Definition</u>: The graph of the function *f* is the set of ordered pairs $\{(a, b) : a \in A \text{ and } f(a) = b\}$.
 - Subset of the Cartesian product $A \times B$
- <u>Recall</u>: From geometry, the (x, y) plane is called the Cartesian coordinate system
 - $x, y \in \mathbb{R}$

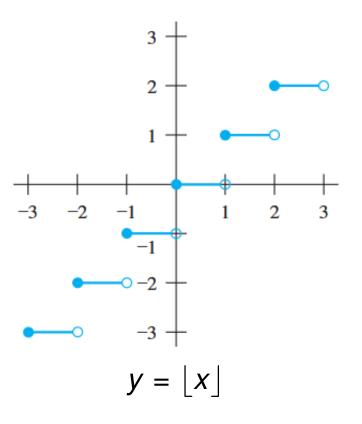
Ceiling and Floor Functions

- Let $x \in \mathbb{R}$
- Definition: The ceiling function assigns x to the smallest integer that is greater than or equal to x
 - Denoted $\lceil x \rceil$



Ceiling and Floor Functions

- Let $x \in \mathbb{R}$
- <u>Definition</u>: The <u>floor function</u> assigns x to the largest integer that is less than or equal to x
 - Denoted $\lfloor x \rfloor$



Ceiling and Floor Functions

- Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$
- Useful properties:
 - $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
 - $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$
 - $\left[-x\right] = -\lfloor x \rfloor$
 - $\lfloor -X \rfloor = -\lceil X \rceil$
 - $\lceil x + n \rceil = \lceil x \rceil + n$
 - $\lfloor x + n \rfloor = \lfloor x \rfloor + n$

Factorial

- Let $n \in \mathbb{Z}$
- <u>Definition</u>: The <u>factorial function</u> is the function $f : \mathbb{N} \to \mathbb{Z}^+$, denoted f(n) = n!, is defined as

$$f(n) = \begin{cases} n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 & \text{if } n > 0 \\ 1 & \text{if } n = 0 \end{cases}$$

Will be used heavily in Chapter 6: Counting