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Union

s Definition: The union of two sets A and B, denoted AU B, is
the set that contains elements that are eitherin Aor in B, or
In both.

AUB={x:x€ AV x € B}

U

A U B is shaded
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Intersection

s Definition: The interesection of two sets A and B, denoted
AN B, is the set containing elements in both A and B.

ANB={x:xe€ AANx € B}

» Two sets are called disjoint if their intersection is the empty
set,i.e., ANB=10

U

AN Bis shaded
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Cardinality of a Union

s Given two finite sets A and B, the number of elements in
AU BIs

IAUB| = |A|l+|B| — |AN B|

s Known as the principle of inclusion-exclusion

= More on this in Ch 6: Counting (later this semester) and
Ch 8: Advanced Counting Techniques (covered in ICS
241)
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Set Difference

s Definition: The difference of two sets A and B, denoted A — B,
IS the set containing elements that are in A, but not in B.

A—B={x:x€ AANXx & B}

= Sometimes denoted as A\ B
s May also be called the complement of B with respect to A

U

A — B is shaded
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Complement

s Definition: The complement of a set A, denoted A, is the
complement of A with respect to U/ (the universal set)

A=U—A
={x:xeUNx&A}

U

A is shaded
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Exercise

= Draw Venn diagrams for each of these combinations of the
sets A, B, and C

1. AN (B — C)
2. (ANB)U (AN C)
3. (A— B)U(A— C)U (B — C)
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Set Identities

= Similar to the logical equivalence identities from Chapter 1
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Set Identities

= Similar to the logical equivalence identities from Chapter 1

s |dentity laws

s ANU=A
s AUD=A
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Set Identities

= Similar to the logical equivalence identities from Chapter 1

s |dentity laws

s ANU=A
s AUD=A

= Domination laws

s AUU=U
«s AND=1(

Kyle Berney — Ch 2.2: Set Operations



Set Identities

= Similar to the logical equivalence identities from Chapter 1

s |dentity laws

s ANU=A
s AUD=A

s Domination laws
s AUU=U
= |dempotent laws

s AUA=A
s ANA=A
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Set Identities

s Complementation law
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Set Identities

s Complementation law

s Commutative laws

s AUB=BUA
s ANB=BNA
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Set Identities

s Complementation law

s Commutative laws

s AUB=BUA
s ANB=BNA

s Associative laws

« AU(BUC)=(AUB)UC
« AN(BNC)=(ANB)NC
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Set Identities

s Complementation law

s Commutative laws
«s AUB=BUA
s ANB=BNA

= Associative laws
«s AUBUC)=(A
«s AN(BNC)=(A

e Distributive laws

« AU(BNC)=(AU
« AN(BUC) = (AN
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B)UC
B)N C

B) N (BU C)
B) U (BN C)




Set Identities

s De Morgan’s laws
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Set Identities

s De Morgan’s laws

«s ANB=AUB
«s AUB=ANB

= Absorption laws

« AUANB) = A
« AN(AUB) = A
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Set Identities

s De Morgan’s laws
« ANB=AUB
« AUB=ANB

= Absorption laws

« AUANB) = A
« AN(AUB) = A

= Complement laws

s AUA=U
s ANA=0(
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Methods for Showing Set Equality

1. Subset method

ms ACBandBC A «<— A=8B
2. Membership table

= Similar to a truth table
3. Applying set identities
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Examples

s Proposition: Provethat AN B=AUB
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Examples

s Proposition: Provethat AN B=AUB

s Proof: Let A and B be arbitrary sets. We will first show that
AN B C AU B. Assume that x € AN B. By definition of
complement, x ¢ AN B, and by the definition of intersection
we know that —((x € A) A\ (x € B)) Is true.

“(x e ANXxeB)=(x¢ AV (x € B)

=(x € AV (x € B)
=xc€AUB.

Thus, ANBC AUB
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Examples

s Proposition: Provethat AN B=AUB

= Proof: Next, we will show that AU B C AN B. Assume that
x € AU B. By definition of union, x € Aor x € B, and by the
definition of complement x € A or x ¢ B. Using De Morgan’s
laws, the previous statement is equivalent to
—((x € A) A (x € B)). It follows from the definition of
intersection that =(x € AN B). And by the definition of
complement, x € AN B. Hence, AUB C AN B.
Since we have shown that AN B C AU B and
AUB C AN B, we can conclude that A= B. &
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Examples

s Proposition: Provethat AN B=AUB

s Proof: Let A and B be arbitrary sets.
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:x € AN B}

. —(x € (AN B))}

:a(x € ANXx € B}

:a(x € A)V —(x € B)}

X ¢ AV x ¢ B}

:x € AV x € B}
={x:x€ AUB}
=AUB .1




Examples

s Proposition: Prove that AN (BU C)=(ANB)U (AN C)
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Examples
s Proposition: Prove that AN (BU C)=(ANB)U (AN C)

s Proof: Let A, B, and C be arbitrary sets. Consider the
membership table

BUC|AN(
1

Q

(ANB)U(BNC)

®

JUC)|ANB|A

U
1
1
1
0
0
0
0
0

B
1
1
1
0
0
0
0
0

S OO D = o
O = O O = O
cC OO0 o0~ O D
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Exercise

s Proposition: Prove that AU (BN C)=(AUB)N (AU C)
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Generalized Unions and Intersections

= Since unions and intersections of sets satisfy associative and
commutative laws

= Union and interesections of multiple sets is well-defined

s EX:

= We can write AU B U B without any ambiguity

s Union of nsets, A, As, ..., A, i
A UA2U...UA,,=UA,-
=1

s Intersection of nsets, A, As, ..., A,

AiNAN...NA,
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