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Union

Definition: The union of two sets A and B, denoted A ∪ B, is
the set that contains elements that are either in A or in B, or
in both.

A ∪ B = {x : x ∈ A ∨ x ∈ B}

A ∪ B is shaded

U
A B
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Intersection

Definition: The interesection of two sets A and B, denoted
A ∩ B, is the set containing elements in both A and B.

A ∩ B = {x : x ∈ A ∧ x ∈ B}
Two sets are called disjoint if their intersection is the empty
set, i.e., A ∩ B = ∅

A ∩ B is shaded

U
A B
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Cardinality of a Union

Given two finite sets A and B, the number of elements in
A ∪ B is

|A ∪ B| = |A| + |B| − |A ∩ B|

Known as the principle of inclusion-exclusion

More on this in Ch 6: Counting (later this semester) and
Ch 8: Advanced Counting Techniques (covered in ICS
241)



Kyle Berney – Ch 2.2: Set Operations 5

Set Difference

Definition: The difference of two sets A and B, denoted A−B,
is the set containing elements that are in A, but not in B.

A − B = {x : x ∈ A ∧ x ̸∈ B}
Sometimes denoted as A \ B
May also be called the complement of B with respect to A

U
A B

A − B is shaded
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Complement

Definition: The complement of a set A, denoted A, is the
complement of A with respect to U (the universal set)

A = U − A

= {x : x ∈ U ∧ x ̸∈ A}

U
A

A is shaded
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Exercise

Draw Venn diagrams for each of these combinations of the
sets A, B, and C

1. A ∩ (B − C)
2. (A ∩ B) ∪ (A ∩ C)
3. (A − B) ∪ (A − C) ∪ (B − C)
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Set Identities

Similar to the logical equivalence identities from Chapter 1
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Set Identities

Similar to the logical equivalence identities from Chapter 1

Identity laws

A ∩ U = A
A ∪ ∅ = A
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Set Identities

Similar to the logical equivalence identities from Chapter 1

Identity laws

A ∩ U = A
A ∪ ∅ = A

Domination laws

A ∪ U = U
A ∩ ∅ = ∅
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Set Identities

Similar to the logical equivalence identities from Chapter 1

Identity laws

A ∩ U = A
A ∪ ∅ = A

Domination laws

A ∪ U = U
A ∩ ∅ = ∅

Idempotent laws

A ∪ A = A
A ∩ A = A
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Set Identities

Complementation law

(A) = A
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Set Identities

Complementation law

(A) = A

Commutative laws

A ∪ B = B ∪ A
A ∩ B = B ∩ A
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Set Identities

Complementation law

(A) = A

Commutative laws

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C
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Set Identities

Complementation law

(A) = A

Commutative laws

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associative laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive laws

A ∪ (B ∩ C) = (A ∪ B) ∩ (B ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (B ∩ C)
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Set Identities

De Morgan’s laws

A ∩ B = A ∪ B
A ∪ B = A ∩ B
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Set Identities

De Morgan’s laws

A ∩ B = A ∪ B
A ∪ B = A ∩ B

Absorption laws

A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = A
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Set Identities

De Morgan’s laws

A ∩ B = A ∪ B
A ∪ B = A ∩ B

Absorption laws

A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = A

Complement laws

A ∪ A = U
A ∩ A = ∅
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Methods for Showing Set Equality

1. Subset method

A ⊆ B and B ⊆ A ⇐⇒ A = B

2. Membership table

Similar to a truth table

3. Applying set identities
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Examples

Proposition: Prove that A ∩ B = A ∪ B
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Examples

Proposition: Prove that A ∩ B = A ∪ B

Proof: Let A and B be arbitrary sets. We will first show that
A ∩ B ⊆ A ∪ B. Assume that x ∈ A ∩ B. By definition of
complement, x ̸∈ A ∩ B, and by the definition of intersection
we know that ¬((x ∈ A) ∧ (x ∈ B)) is true.

¬((x ∈ A) ∧ (x ∈ B)) ≡ (x ̸∈ A) ∨ (x ̸∈ B)

≡ (x ∈ A) ∨ (x ∈ B)

≡ x ∈ A ∪ B .
Thus, A ∩ B ⊆ A ∪ B
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Examples

Proposition: Prove that A ∩ B = A ∪ B

Proof: Next, we will show that A ∪ B ⊆ A ∩ B. Assume that
x ∈ A ∪ B. By definition of union, x ∈ A or x ∈ B, and by the
definition of complement x ̸∈ A or x ̸∈ B. Using De Morgan’s
laws, the previous statement is equivalent to
¬((x ∈ A) ∧ (x ∈ B)). It follows from the definition of
intersection that ¬(x ∈ A ∩ B). And by the definition of
complement, x ∈ A ∩ B. Hence, A ∪ B ⊆ A ∩ B.
Since we have shown that A ∩ B ⊆ A ∪ B and
A ∪ B ⊆ A ∩ B, we can conclude that A = B. ■
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Examples

Proposition: Prove that A ∩ B = A ∪ B

Proof: Let A and B be arbitrary sets.

A ∩ B = {x : x ̸∈ A ∩ B}
= {x : ¬(x ∈ (A ∩ B))}
= {x : ¬(x ∈ A ∧ x ∈ B}
= {x : ¬(x ∈ A) ∨ ¬(x ∈ B)}
= {x : x ̸∈ A ∨ x ̸∈ B}
= {x : x ∈ A ∨ x ∈ B}
= {x : x ∈ A ∪ B}
= A ∪ B .■
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Examples

Proposition: Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
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Examples

Proposition: Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Proof: Let A, B, and C be arbitrary sets. Consider the
membership table

■
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Exercise

Proposition: Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
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Generalized Unions and Intersections

Since unions and intersections of sets satisfy associative and
commutative laws

Union and interesections of multiple sets is well-defined

Ex:

We can write A ∪ B ∪ B without any ambiguity

Union of n sets, A1, A2, . . . , An

A1 ∪ A2 ∪ . . . ∪ An =
n⋃

i=1

Ai

Intersection of n sets, A1, A2, . . . , An

A1 ∩ A2 ∩ . . . ∩ An =
n⋂

i=1

Ai


