

Ch 2.2: Set Operations

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Kyle Berney – Ch 2.2: Set Operations

Union

• Definition: The union of two sets A and B, denoted $A \cup B$, is the set that contains elements that are either in A or in B, or in both.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Intersection

• <u>Definition</u>: The <u>interesection</u> of two sets A and B, denoted $A \cap B$, is the set containing elements in both A and B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

• Two sets are called <u>disjoint</u> if their intersection is the empty set, i.e., $A \cap B = \emptyset$

Cardinality of a Union

• Given two finite sets A and B, the number of elements in $A \cup B$ is

$$|A \cup B| = |A| + |B| - |A \cap B|$$

- Known as the principle of inclusion-exclusion
 - More on this in Ch 6: Counting (later this semester) and Ch 8: Advanced Counting Techniques (covered in ICS 241)

Set Difference

 <u>Definition</u>: The <u>difference</u> of two sets A and B, denoted A – B, is the set containing elements that are in A, but not in B.

$$A - B = \{x : x \in A \land x \not\in B\}$$

- Sometimes denoted as $A \setminus B$
- May also be called the complement of B with respect to A

Complement

• <u>Definition</u>: The complement of a set A, denoted \overline{A} , is the complement of A with respect to \mathcal{U} (the universal set)

$$\overline{A} = \mathcal{U} - A$$
$$= \{ x : x \in \mathcal{U} \land x \notin A \}$$

 \overline{A} is shaded

Exercise

 Draw Venn diagrams for each of these combinations of the sets A, B, and C

1.
$$A \cap (B - C)$$

2. $(A \cap B) \cup (A \cap C)$
3. $(A - B) \cup (A - C) \cup (B - C)$

Similar to the logical equivalence identities from Chapter 1

- Similar to the logical equivalence identities from Chapter 1
- Identity laws
 - $A \cap \mathcal{U} = A$
 - $A \cup \emptyset = A$

- Similar to the logical equivalence identities from Chapter 1
- Identity laws
 - $A \cap \mathcal{U} = A$
 - $A \cup \emptyset = A$
- Domination laws
 - $A \cup \mathcal{U} = \mathcal{U}$
 - $A \cap \emptyset = \emptyset$

- Similar to the logical equivalence identities from Chapter 1
- Identity laws
 - $A \cap \mathcal{U} = A$
 - $A \cup \emptyset = A$
- Domination laws
 - $A \cup \mathcal{U} = \mathcal{U}$
 - $A \cap \emptyset = \emptyset$
- Idempotent laws
 - $A \cup A = A$
 - $A \cap A = A$

Complementation law

•
$$\overline{(\overline{A})} = A$$

Complementation law

•
$$\overline{(\overline{A})} = A$$

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$

Complementation law

•
$$\overline{(\overline{A})} = A$$

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
 - $A \cup (B \cup C) = (A \cup B) \cup C$
 - $A \cap (B \cap C) = (A \cap B) \cap C$

Complementation law

•
$$\overline{(\overline{A})} = A$$

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
 - $A \cup (B \cup C) = (A \cup B) \cup C$
 - $A \cap (B \cap C) = (A \cap B) \cap C$

Distributive laws

- $A \cup (B \cap C) = (A \cup B) \cap (B \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (B \cap C)$

- De Morgan's laws
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- De Morgan's laws
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Absorption laws
 - $A \cup (A \cap B) = A$
 - $A \cap (A \cup B) = A$

- De Morgan's laws
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Absorption laws
 - $A \cup (A \cap B) = A$
 - $A \cap (A \cup B) = A$
- Complement laws
 - $A \cup \overline{A} = \mathcal{U}$
 - $A \cap \overline{A} = \emptyset$

Methods for Showing Set Equality

- 1. Subset method
 - $A \subseteq B$ and $B \subseteq A \iff A = B$
- 2. Membership table
 - Similar to a truth table
- 3. Applying set identities

• Proposition: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Kyle Berney – Ch 2.2: Set Operations

• Proposition: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• <u>Proof</u>: Let *A* and *B* be arbitrary sets. We will first show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. Assume that $x \in \overline{A \cap B}$. By definition of complement, $x \notin A \cap B$, and by the definition of intersection we know that $\neg((x \in A) \land (x \in B))$ is true.

$$egin{aligned}
equation & (x \in B)) \equiv (x \notin A) \lor (x \notin B) \\
& \equiv (x \in \overline{A}) \lor (x \in \overline{B}) \\
& \equiv x \in \overline{A} \cup \overline{B}.
\end{aligned}$$

Thus, $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$

• Proposition: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• <u>Proof:</u> Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. Assume that $x \in \overline{A} \cup \overline{B}$. By definition of union, $x \in \overline{A}$ or $x \in \overline{B}$, and by the definition of complement $x \notin A$ or $x \notin B$. Using De Morgan's laws, the previous statement is equivalent to $\neg((x \in A) \land (x \in B))$. It follows from the definition of intersection that $\neg(x \in A \cap B)$. And by the definition of complement, $x \in \overline{A \cap B}$. Hence, $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$. Since we have shown that $\overline{A \cap B} \subseteq \overline{A \cup B}$ and $\overline{A \cup B} \subseteq \overline{A \cap B}$, we can conclude that A = B.

• Proposition: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• <u>Proof</u>: Let *A* and *B* be arbitrary sets.

$$\overline{A \cap B} = \{x : x \notin A \cap B\}$$

$$= \{x : \neg (x \in (A \cap B))\}$$

$$= \{x : \neg (x \in A \land x \in B\}$$

$$= \{x : \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x : x \notin A \lor x \notin B\}$$

$$= \{x : x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x : x \in \overline{A} \cup \overline{B}\}$$

$$= \{x : x \in \overline{A} \cup \overline{B}\}$$

• Proposition: Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Kyle Berney – Ch 2.2: Set Operations

- Proposition: Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- <u>Proof</u>: Let A, B, and C be arbitrary sets. Consider the membership table

A	В	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (B \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Exercise

• Proposition: Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Kyle Berney – Ch 2.2: Set Operations

Generalized Unions and Intersections

- Since unions and intersections of sets satisfy associative and commutative laws
 - Union and interesections of multiple sets is well-defined
- <u>Ex:</u>
 - We can write $A \cup B \cup B$ without any ambiguity
- Union of *n* sets, A_1, A_2, \dots, A_n $A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$
- Intersection of n sets, A_1, A_2, \ldots, A_n

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

n