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Sets

= Definition: A set is an unorder collection of distinct objects.

= Members of a set are called elements or members of the
set.

» |f an element a is contained in the set A, we write a € A
otherwise a ¢ A.

s Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.
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Sets

= Definition: A set is an unorder collection of distinct objects.

= Members of a set are called elements or members of the
set.

» |f an element a is contained in the set A, we write a € A
otherwise a ¢ A.

s Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.

= Example:

ne set of all vowels S = {‘a’,‘e’, ", ‘0’, ‘U’
ement‘a €S
ement'zZ & S
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Sets

= Definition: A set is an unorder collection of distinct objects.

= Members of a set are called elements or members of the
set.

» |f an element a is contained in the set A, we write a € A
otherwise a ¢ A.

s Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.

= Example:

The set of all vowels S = {‘a ‘0%, U’
Element‘a’ € S

Element ‘Z’ gZ S

{‘a’,‘e’, I, ‘0, ‘'u} ={a,‘a, ‘e, 7,0, u,T 0}
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Defining Sets

s Demonstrate a pattern
= Example: The set of all lower case letters

L={a, b, c,...."y, 2}
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Defining Sets

s Demonstrate a pattern
= Example: The set of all lower case letters

L={a,b,c,..., 7,2}

« Example: All positive even integers
E={246,8,10,...
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Defining Sets

s Demonstrate a pattern
= Example: The set of all lower case letters

L={a,b,c,...,y, 2}

« Example: All positive even integers
E={246,8,10,...

= Example: All integers
Z=A...,-3,-2,—1,0,1,2,3,...
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Defining Sets

= Set builder notation
= Example: Intervals between two values x and y

[x.y]={z:x<z<yj}
X, y)={z: x<z<y}

Xy] {z:x<z<y}
yY)={z:x<z<y}
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Defining Sets

= Set builder notation
= Example: Intervals between two values x and y

(X, yl={z:x<z<yj
X, y)={z: x<z<y}

xy] {z:x<z<y}
y)={z: x<z<y}

= Note: It is common to see both : and | used
interchangeably
= Read “such that”
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Defining Sets

= Set builder notation
= Example: Intervals between two values x and y
X, yl={z:x<z<y}
X, )={z: x<z<y}
X, yl={z: x<z<y}
x,y)={z:x<z<y}

= Example: All rational numbers

Q={g:a€Z,b€Z, andb;lO}
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Notable Sets

s Set of all natural numbers

N ={0,1,2,3,...}
= Whether 0 is a natural number or not is a controversial
topic (in math)
= We will follow the convention in the textbook that 0 € IN
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Notable Sets

s Set of all natural numbers
N ={0,1,2,3,...}

s Set of all integers
Z=A...,-38,-2,—-1,0,1,2,3,...}
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Notable Sets

s Set of all natural numbers
N ={0,1,2,3,...}

s Set of all integers
Z=A...,-38,-2,—-1,0,1,2,3,...}

= Set of all positive integers
7" ={1,2,8,...}
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Notable Sets

s Set of all natural numbers
N ={0,1,2,3,...}

s Set of all integers
Z=A...,-38,-2,—-1,0,1,2,3,...}

= Set of all positive integers
7" ={1,2,8,...}

= Set of all negative integers
Z  ={-1,-2,-3,...}
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Notable Sets

s Set of all rational numbers
Q = {f acZbeZ, andb;zo}

b
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Notable Sets

s Set of all rational numbers

Q={g:a€Z,bGZ, andb;zo}

s Set of all real numbers, R
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Notable Sets

s Set of all rational numbers

Q={giaEZ,bEZ, andb;/O}

s Set of all real numbers, R

s Set of all positive real numbers

R*={xeR:x >0}
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Notable Sets

s Set of all rational numbers

Q={giaEZ,b€Z, andb;/O}

s Set of all real numbers, R

s Set of all positive real numbers

R*={xeR:x >0}

s Set of all negative real numbers
R™={xeR:x <0}
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Notable Sets

s Set of all rational numbers

Q={giaEZ,b€Z, andb;/O}

Set of all real numbers, IR

Set of all positive real numbers

R*={xeR:x >0}

Set of all negative real numbers
R™={xeR:x <0}

Set of all complex numbers, C
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Remarks

= |n programming languages, a datatype is defined as

= A set of data values
= A set of operations

s EX: Boolean datatype

= Set of values

« {0,1} ={T,F}

= Set of operations
« {AND (&&), OR (||), NOT (!), XOR ("), >, <, >, <, ==

—J)
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Remarks

s Sets can have other sets as members
= Example:

{N,Z,Q, R}
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Remarks

s Sets can have other sets as members
= Example:

{N,Z,Q, R}

s A set that contains no elements is called the empty set,
denoted ()

» Intuitively: Can be thought of as an empty folder, the
folder still exists its just empty!
= A set can contain the empty set, e.g., {0}
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Remarks

s Sets can have other sets as members
= Example:

{N,Z,Q, R}

s A set that contains no elements is called the empty set,
denoted ()

» Intuitively: Can be thought of as an empty folder, the
folder still exists its just empty!
= A set can contain the empty set, e.g., {0}

= The universal set, denoted U/ (or )), is the set containing all
objects under consideration

= Depends on the context of the problem
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Subsets and Supersets

= [wo sets A and B are equal, denoted A = B, if and only if
they have the same elements
Vx(x € A < x € B)
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Subsets and Supersets

= [wo sets A and B are equal, denoted A = B, if and only if
they have the same elements
Vx(x € A < x € B)

s Definition: The set A is a subset of set B, denoted A C B, if
and only if every element of A is also an element of B.

= We say B is a superset of A
= Allows for the possibility that A = B
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Subsets and Supersets

= [wo sets A and B are equal, denoted A = B, if and only if
they have the same elements
Vx(x € A < x € B)

s Definition: The set A is a subset of set B, denoted A C B, if
and only if every element of A is also an element of B.

= We say B is a superset of A
= Allows for the possibility that A = B

s Definition: The set A is a proper subset of set B, denoted

A C B, if and only if every element of A is also an element of
Band A+ B.

= We say B is a proper superset of A
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Subsets and Supersets

= [wo sets A and B are equal, denoted A = B, if and only if
they have the same elements
Vx(x € A < x € B)

s Definition: The set A is a subset of set B, denoted A C B, if
and only if every element of A is also an element of B.

= We say B is a superset of A
= Allows for the possibility that A = B

s Definition: The set A is a proper subset of set B, denoted

A C B, if and only if every element of A is also an element of
Band A+ B.

= We say B is a proper superset of A

» [ntuitively: Similarto <, <, >, >
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Subsets and Supersets

= Jo show that A C B, every element of Ais an element of B

Vx(x € A= x € B)

Kyle Berney — Ch 2.1: Sets



Subsets and Supersets

= Jo show that A C B, every element of Ais an element of B

Vx(x € A= x € B)

= Jo show that A C B, every element of Ais an element of B
and there exists at least one element of B that is not an
element of A

Vx(x e A= xe B)Adx(x € BAx & A)
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Subsets and Supersets

= To show that A & B, find a single element in A that is not an
element of B

dx(x € AN x € B)
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Subsets and Supersets

= To show that A & B, find a single element in A that is not an
element of B

dx(x € AN x € B)

= Jo show that A = B, every element of Ais an element of B
and vice versa

ACBABCA
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Graphical Representation of Sets

= Venn diagrams are typically used to represent sets

U
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.

s Definition: Given a set S, the power set of S, denoted P(S),
Is the set of all subsets of S

= If |S| = n, then |P(S)| = 2"
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.

s Definition: Given a set S, the power set of S, denoted P(S),
Is the set of all subsets of S

= If |S| = n, then |P(S)| = 2"

s Remark: For every set S,

I@gs
s SCS
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.

s Definition: Given a set S, the power set of S, denoted P(S),
Is the set of all subsets of S

= If |S| = n, then |P(S)| = 2"

s Example: Let S = {0, 1,2}

P(S) ={0.{0}.{1}.{2},
={0,1},{0,2},{1,2},{0,1,2}}
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.

s Definition: Given a set S, the power set of S, denoted P(S),
Is the set of all subsets of S

= If |S| = n, then |P(S)| = 2"

s Example: Let S = {0, 1,2}

P(S) ={0,{0},{1}.{2},

={0,1},{0,2},{1,2},{0,1,2}}
» |S|=3and |P(S)|=8=2°
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Cardinality and Power Sets

= Definition: Let S be a set. If there are exactly n € IN distinct
elements in S, then the cardinality of Sis n, denoted |S| = n.

s Definition: Given a set S, the power set of S, denoted P(S),
Is the set of all subsets of S

= If |S| = n, then |P(S)| = 2"

s Remark: If a set is not finite, then it is infinite.

« Example:
« The set of all integers Z. is infinite
« The set of all real numbers R is infinite
= |n Section 2.5, we discuss the cardinality of infinite sets
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Cartesian Product

= Definition: An ordered n-tuple, denoted (ay, a», . .., ap), Is an
ordered collection of elements

s Definition: The Cartesian product of the sets A, Ao, ..., A,
denoted Ay X As X ... X A, Is the set of ordered n-tuples
(a4, @»,...,an), Where a; € Ajfori=1,2,...,n

A X A X ... X A,

={(a153255an)aI€A/forl=1’2”n}
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Cartesian Product

s Ex:

1. A={1,2}and B={a, b, c}
« AXxB=1{(1,a),(1,b),(1,0),(2,a),(2,b),(2,¢)}
» BxA={(a,1),(a?2),(b,1),(b,2),(c,1),(c2)}
» Note: Order of the sets in the Cartesian product

matters!
2. A= {1 , 2}

s AXA=A*={(1,1),(1,2),(2,1),(2,2)}
" AxAx A=A ={(1,1,1),(1,
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Set Notation with Quantifiers

s Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain
must satisfy.

= Ex: Domain is all real numbers, IR
« Restrict domain to “all real numbers less than 0.”

Vx < 0(x* > 0)
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Set Notation with Quantifiers

s Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain
must satisfy.

= Ex: Domain is all real numbers, IR
« Restrict domain to “all real numbers less than 0.”

Vx < 0(x* > 0)

=Vx € R™(x* > 0)
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Set Notation with Quantifiers

s Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain

must satisfy.

= Ex: Domain is all real numbers, IR
« Restrict domain to “all real numbers less than 0.”

Vx < 0(x° > 0)

=Vx € R™(x* > 0)

= Remark: Typically, instead of stating the domain in english
(as we have seen in Chapter 1), we use set notation to state

the domain
s Ex: Ix € Z(x* = 1)
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