
Kyle Berney – Ch 2.1: Sets 1

Ch 2.1: Sets

KYLE BERNEY

DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

ICS 141: Discrete Mathematics for Computer Science I



Kyle Berney – Ch 2.1: Sets 2 - 1

Sets

Definition: A set is an unorder collection of distinct objects.

Members of a set are called elements or members of the
set.
If an element a is contained in the set A, we write a ∈ A
otherwise a ̸∈ A.

Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.
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Definition: A set is an unorder collection of distinct objects.

Members of a set are called elements or members of the
set.
If an element a is contained in the set A, we write a ∈ A
otherwise a ̸∈ A.

Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.

Example:

The set of all vowels S = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}
Element ‘a’ ∈ S
Element ‘z’ ̸∈ S
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Sets

Definition: A set is an unorder collection of distinct objects.

Members of a set are called elements or members of the
set.
If an element a is contained in the set A, we write a ∈ A
otherwise a ̸∈ A.

Note: We typically denote sets using uppercase letters and
elements of a set using lowercase letters.

Example:

The set of all vowels S = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}
Element ‘a’ ∈ S
Element ‘z’ ̸∈ S
{‘a’, ‘e’, ‘i’, ‘o’, ‘u’} = {‘a’, ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘i’, ‘o’}
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Defining Sets

Demonstrate a pattern

Example: The set of all lower case letters

L = {‘a’, ‘b’, ‘c’, . . . , ‘y’, ‘z’}
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Demonstrate a pattern
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Example: All positive even integers

E = {2, 4, 6, 8, 10, . . .}
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Defining Sets

Demonstrate a pattern

Example: The set of all lower case letters

L = {‘a’, ‘b’, ‘c’, . . . , ‘y’, ‘z’}

Example: All positive even integers

E = {2, 4, 6, 8, 10, . . .}

Example: All integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
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Defining Sets

Set builder notation

Example: Intervals between two values x and y

[x , y ] = {z : x ≤ z ≤ y}
[x , y ) = {z : x ≤ z < y}
(x , y ] = {z : x < z ≤ y}
(x , y ) = {z : x < z < y}
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Defining Sets

Set builder notation

Example: Intervals between two values x and y

[x , y ] = {z : x ≤ z ≤ y}
[x , y ) = {z : x ≤ z < y}
(x , y ] = {z : x < z ≤ y}
(x , y ) = {z : x < z < y}

Note: It is common to see both : and | used
interchangeably
Read “such that”
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Defining Sets

Set builder notation

Example: Intervals between two values x and y

[x , y ] = {z : x ≤ z ≤ y}
[x , y ) = {z : x ≤ z < y}
(x , y ] = {z : x < z ≤ y}
(x , y ) = {z : x < z < y}

Example: All rational numbers

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}
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Notable Sets

Set of all natural numbers
N = {0, 1, 2, 3, . . .}

Whether 0 is a natural number or not is a controversial
topic (in math)
We will follow the convention in the textbook that 0 ∈ N
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Notable Sets

Set of all natural numbers
N = {0, 1, 2, 3, . . .}

Set of all integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
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Notable Sets

Set of all natural numbers
N = {0, 1, 2, 3, . . .}

Set of all integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Set of all positive integers

Z+ = {1, 2, 3, . . .}
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Notable Sets

Set of all natural numbers
N = {0, 1, 2, 3, . . .}

Set of all integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

Set of all positive integers

Z+ = {1, 2, 3, . . .}

Set of all negative integers

Z− = {−1,−2,−3, . . .}



Kyle Berney – Ch 2.1: Sets 6 - 1

Notable Sets

Set of all rational numbers

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}
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Notable Sets

Set of all rational numbers

Set of all real numbers, R

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}
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Notable Sets

Set of all rational numbers

Set of all real numbers, R

Set of all positive real numbers

R+ = {x ∈ R : x > 0}

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}
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Notable Sets

Set of all rational numbers

Set of all real numbers, R

Set of all positive real numbers

R+ = {x ∈ R : x > 0}

Set of all negative real numbers

R− = {x ∈ R : x < 0}

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}
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Notable Sets

Set of all rational numbers

Set of all real numbers, R

Set of all positive real numbers

R+ = {x ∈ R : x > 0}

Set of all negative real numbers

R− = {x ∈ R : x < 0}

Q =
{a

b
: a ∈ Z, b ∈ Z, and b ̸= 0

}

Set of all complex numbers, C
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Remarks

In programming languages, a datatype is defined as

A set of data values
A set of operations

Ex: Boolean datatype

Set of values
{0, 1} = {T, F}

Set of operations
{AND (&&), OR (∥), NOT (!), XOR (ˆ), >,<,≥,≤, == }
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Remarks

Sets can have other sets as members

Example:

{N, Z, Q, R}
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Remarks

Sets can have other sets as members

Example:

{N, Z, Q, R}

A set that contains no elements is called the empty set,
denoted ∅

Intuitively: Can be thought of as an empty folder, the
folder still exists its just empty!
A set can contain the empty set, e.g., {∅}
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Remarks

Sets can have other sets as members

Example:

{N, Z, Q, R}

A set that contains no elements is called the empty set,
denoted ∅

Intuitively: Can be thought of as an empty folder, the
folder still exists its just empty!
A set can contain the empty set, e.g., {∅}

The universal set, denoted U (or Ω), is the set containing all
objects under consideration

Depends on the context of the problem
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Subsets and Supersets

Two sets A and B are equal, denoted A = B, if and only if
they have the same elements

∀x(x ∈ A ⇐⇒ x ∈ B)
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Subsets and Supersets

Two sets A and B are equal, denoted A = B, if and only if
they have the same elements

∀x(x ∈ A ⇐⇒ x ∈ B)

Definition: The set A is a subset of set B, denoted A ⊆ B, if
and only if every element of A is also an element of B.

We say B is a superset of A
Allows for the possibility that A = B
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Subsets and Supersets

Two sets A and B are equal, denoted A = B, if and only if
they have the same elements

∀x(x ∈ A ⇐⇒ x ∈ B)

Definition: The set A is a subset of set B, denoted A ⊆ B, if
and only if every element of A is also an element of B.

We say B is a superset of A
Allows for the possibility that A = B

Definition: The set A is a proper subset of set B, denoted
A ⊂ B, if and only if every element of A is also an element of
B and A ̸= B.

We say B is a proper superset of A
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Subsets and Supersets

Two sets A and B are equal, denoted A = B, if and only if
they have the same elements

∀x(x ∈ A ⇐⇒ x ∈ B)

Definition: The set A is a subset of set B, denoted A ⊆ B, if
and only if every element of A is also an element of B.

We say B is a superset of A
Allows for the possibility that A = B

Definition: The set A is a proper subset of set B, denoted
A ⊂ B, if and only if every element of A is also an element of
B and A ̸= B.

We say B is a proper superset of A

Intuitively: Similar to ≤,<,≥,>
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Subsets and Supersets

To show that A ⊆ B, every element of A is an element of B

∀x(x ∈ A ⇒ x ∈ B)
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Subsets and Supersets

To show that A ⊆ B, every element of A is an element of B

∀x(x ∈ A ⇒ x ∈ B)

To show that A ⊂ B, every element of A is an element of B
and there exists at least one element of B that is not an
element of A

∀x(x ∈ A ⇒ x ∈ B) ∧ ∃x(x ∈ B ∧ x ̸∈ A)
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Subsets and Supersets

To show that A ̸⊆ B, find a single element in A that is not an
element of B

∃x(x ∈ A ∧ x ̸∈ B)
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Subsets and Supersets

To show that A ̸⊆ B, find a single element in A that is not an
element of B

∃x(x ∈ A ∧ x ̸∈ B)

To show that A = B, every element of A is an element of B
and vice versa

A ⊆ B ∧ B ⊆ A
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Graphical Representation of Sets

Venn diagrams are typically used to represent sets
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Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.
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Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.

Definition: Given a set S, the power set of S, denoted P(S),
is the set of all subsets of S

If |S| = n, then |P(S)| = 2n
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Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.

Definition: Given a set S, the power set of S, denoted P(S),
is the set of all subsets of S

If |S| = n, then |P(S)| = 2n

Remark: For every set S,

∅ ⊆ S
S ⊆ S
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Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.

Definition: Given a set S, the power set of S, denoted P(S),
is the set of all subsets of S

If |S| = n, then |P(S)| = 2n

Example: Let S = {0, 1, 2}

P(S) = {∅, {0}, {1}, {2},

= {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}



Kyle Berney – Ch 2.1: Sets 13 - 5

Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.

Definition: Given a set S, the power set of S, denoted P(S),
is the set of all subsets of S

If |S| = n, then |P(S)| = 2n

Example: Let S = {0, 1, 2}

P(S) = {∅, {0}, {1}, {2},

= {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
|S| = 3 and |P(S)| = 8 = 23
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Cardinality and Power Sets

Definition: Let S be a set. If there are exactly n ∈ N distinct
elements in S, then the cardinality of S is n, denoted |S| = n.

Definition: Given a set S, the power set of S, denoted P(S),
is the set of all subsets of S

If |S| = n, then |P(S)| = 2n

Remark: If a set is not finite, then it is infinite.

Example:
The set of all integers Z is infinite
The set of all real numbers R is infinite

In Section 2.5, we discuss the cardinality of infinite sets
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Cartesian Product

Definition: An ordered n-tuple, denoted (a1, a2, . . . , an), is an
ordered collection of elements
Definition: The Cartesian product of the sets A1, A2, . . . , An,
denoted A1 × A2 × . . .× An, is the set of ordered n-tuples
(a1, a2, . . . , an), where ai ∈ Ai for i = 1, 2, . . . , n

A1 × A2 × . . .× An

={(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}
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Cartesian Product

Ex:

1. A = {1, 2} and B = {a, b, c}
A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}
Note: Order of the sets in the Cartesian product
matters!

2. A = {1, 2}
A × A = A2 = {(1, 1), (1, 2), (2, 1), (2, 2)}
A × A × A = A3 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}
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Set Notation with Quantifiers

Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain
must satisfy.

Ex: Domain is all real numbers, R

Restrict domain to “all real numbers less than 0.”

∀x < 0(x2 ≥ 0)
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Set Notation with Quantifiers

Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain
must satisfy.

Ex: Domain is all real numbers, R

Restrict domain to “all real numbers less than 0.”

∀x < 0(x2 ≥ 0)
≡ ∀x ∈ R−(x2 ≥ 0)
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Set Notation with Quantifiers

Recall: Using quantifiers, we can limit the domain by
providing additional conditions that the elements of a domain
must satisfy.

Ex: Domain is all real numbers, R

Restrict domain to “all real numbers less than 0.”

∀x < 0(x2 ≥ 0)
≡ ∀x ∈ R−(x2 ≥ 0)

Remark: Typically, instead of stating the domain in english
(as we have seen in Chapter 1), we use set notation to state
the domain

Ex: ∃x ∈ Z(x2 = 1)


