

Ch 2.1: Sets

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Kyle Berney – Ch 2.1: Sets

Sets

- Definition: A set is an unorder collection of distinct objects.
 - Members of a set are called <u>elements</u> or <u>members</u> of the set.
 - If an element *a* is contained in the set *A*, we write *a* ∈ *A* otherwise *a* ∉ *A*.
- Note: We typically denote sets using uppercase letters and elements of a set using lowercase letters.

Sets

- <u>Definition</u>: A <u>set</u> is an unorder collection of distinct objects.
 - Members of a set are called <u>elements</u> or <u>members</u> of the set.
 - If an element *a* is contained in the set *A*, we write *a* ∈ *A* otherwise *a* ∉ *A*.
- Note: We typically denote sets using uppercase letters and elements of a set using lowercase letters.
- Example:
 - The set of all vowels $S = \{ (a', (e', (i', (o', (u')))) \}$
 - Element 'a' $\in S$
 - Element 'z' $\notin S$

Sets

- <u>Definition</u>: A <u>set</u> is an unorder collection of distinct objects.
 - Members of a set are called <u>elements</u> or <u>members</u> of the set.
 - If an element *a* is contained in the set *A*, we write *a* ∈ *A* otherwise *a* ∉ *A*.
- Note: We typically denote sets using uppercase letters and elements of a set using lowercase letters.
- Example:
 - The set of all vowels $S = \{ (a', (e', (i', (o', (u')))) \}$
 - Element 'a' $\in S$
 - Element 'z' $\notin S$
 - { 'a', 'e', 'i', 'o', 'u' } = { 'a', 'a', 'e', 'i', 'o', 'u', 'i', 'o' }

- Demonstrate a pattern
 - Example: The set of all lower case letters

$$L = \{ (a', b', c', \dots, y', z') \}$$

- Demonstrate a pattern
 - Example: The set of all lower case letters

$$L = \{ (a', b', c', \dots, y', z') \}$$

• Example: All positive even integers

$$E = \{2, 4, 6, 8, 10, \ldots\}$$

- Demonstrate a pattern
 - Example: The set of all lower case letters

 $L = \{ a', b', c', \dots, y', z' \}$

• Example: All positive even integers

$$E = \{2, 4, 6, 8, 10, \ldots\}$$

Example: All integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

- Set builder notation
 - Example: Intervals between two values *x* and *y*

$$[x, y] = \{z : x \le z \le y\}$$
$$[x, y) = \{z : x \le z < y\}$$
$$(x, y] = \{z : x < z \le y\}$$
$$(x, y) = \{z : x < z < y\}$$

- Set builder notation
 - Example: Intervals between two values *x* and *y*

$$[x, y] = \{z : x \le z \le y\}$$
$$[x, y) = \{z : x \le z < y\}$$
$$(x, y] = \{z : x < z \le y\}$$
$$(x, y) = \{z : x < z < y\}$$

- Note: It is common to see both : and | used interchangeably
- Read "such that"

- Set builder notation
 - Example: Intervals between two values *x* and *y*

$$[x, y] = \{z : x \le z \le y\}$$
$$[x, y) = \{z : x \le z < y\}$$
$$(x, y] = \{z : x < z \le y\}$$
$$(x, y) = \{z : x < z < y\}$$

• Example: All rational numbers

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$$

Set of all <u>natural numbers</u>

 $\mathbb{N} = \left\{0, 1, 2, 3, \ldots\right\}$

- Whether 0 is a natural number or not is a controversial topic (in math)
- We will follow the convention in the textbook that $0\in\mathbb{N}$

Set of all <u>natural numbers</u>

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Set of all integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Set of all <u>natural numbers</u>

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Set of all integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Set of all positive integers

$$\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$$

Set of all <u>natural numbers</u>

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Set of all integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Set of all positive integers

$$\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$$

Set of all negative integers

$$\mathbb{Z}^- = \{-1, -2, -3, \ldots\}$$

Set of all <u>rational numbers</u>

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$$

• Set of all <u>rational numbers</u> $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$

• Set of all <u>real numbers</u>, \mathbb{R}

- Set of all <u>rational numbers</u> $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$
- Set of all <u>real numbers</u>, \mathbb{R}
- Set of all positive real numbers

$$\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$$

- Set of all <u>rational numbers</u> $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$
- Set of all <u>real numbers</u>, \mathbb{R}
- Set of all positive real numbers

$$\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$$

Set of all negative real numbers

$$\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$$

- Set of all <u>rational numbers</u> $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ and } b \neq 0 \right\}$
- Set of all <u>real numbers</u>, \mathbb{R}
- Set of all positive real numbers

$$\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$$

Set of all negative real numbers

$$\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$$

• Set of all complex numbers, $\mathbb C$

- In programming languages, a datatype is defined as
 - A set of data values
 - A set of operations
- Ex: Boolean datatype
 - Set of values
 - $\{0, 1\} = \{T, F\}$
 - Set of operations
 - {AND (&&), OR (||), NOT (!), XOR (^), >, <, \geq , \leq , == }

- Sets can have other sets as members
 - Example:

$\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}$

- Sets can have other sets as members
 - Example:

$\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}$

- A set that contains no elements is called the empty set, denoted \emptyset
 - Intuitively: Can be thought of as an empty folder, the folder still exists its just empty!
 - A set can contain the empty set, e.g., $\{\emptyset\}$

- Sets can have other sets as members
 - Example:

$\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}\}$

- A set that contains no elements is called the empty set, denoted \emptyset
 - Intuitively: Can be thought of as an empty folder, the folder still exists its just empty!
 - A set can contain the empty set, e.g., $\{\emptyset\}$
- The <u>universal set</u>, denoted \mathcal{U} (or Ω), is the set containing all objects under consideration
 - Depends on the context of the problem

Two sets A and B are equal, denoted A = B, if and only if they have the same elements

 $\forall x (x \in A \iff x \in B)$

- Two sets A and B are equal, denoted A = B, if and only if they have the same elements
 ∀x(x ∈ A ⇐⇒ x ∈ B)
- <u>Definition</u>: The set A is a <u>subset</u> of set B, denoted $A \subseteq B$, if and only if every element of A is also an element of B.
 - We say B is a superset of A
 - Allows for the possibility that A = B

Two sets A and B are equal, denoted A = B, if and only if they have the same elements
 ∀x(x ∈ A ⇐⇒ x ∈ B)

• <u>Definition</u>: The set A is a <u>subset</u> of set B, denoted $A \subseteq B$, if and only if every element of A is also an element of B.

- We say *B* is a superset of *A*
- Allows for the possibility that A = B
- Definition: The set A is a proper subset of set B, denoted A ⊂ B, if and only if every element of A is also an element of B and A ≠ B.
 - We say *B* is a proper superset of *A*

Two sets A and B are equal, denoted A = B, if and only if they have the same elements
 ∀x(x ∈ A ⇐⇒ x ∈ B)

 <u>Definition</u>: The set A is a <u>subset</u> of set B, denoted A ⊆ B, if and only if every element of A is also an element of B.

- We say *B* is a superset of *A*
- Allows for the possibility that A = B
- Definition: The set A is a proper subset of set B, denoted A ⊂ B, if and only if every element of A is also an element of B and A ≠ B.
 - We say B is a proper superset of A
- Intuitively: Similar to $\leq, <, \geq, >$

• To show that $A \subseteq B$, every element of A is an element of B

 $\forall x (x \in A \Rightarrow x \in B)$

- To show that $A \subseteq B$, every element of A is an element of B $\forall x (x \in A \Rightarrow x \in B)$
- To show that A ⊂ B, every element of A is an element of B and there exists at least one element of B that is not an element of A

$$\forall x (x \in A \Rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

• To show that $A \not\subseteq B$, find a single element in A that is not an element of B

 $\exists x (x \in A \land x \notin B)$

• To show that $A \not\subseteq B$, find a single element in A that is not an element of B

 $\exists x (x \in A \land x \notin B)$

To show that A = B, every element of A is an element of B and vice versa

 $A \subseteq B \land B \subseteq A$

Graphical Representation of Sets

Venn diagrams are typically used to represent sets

• <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.

- <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.
- <u>Definition</u>: Given a set *S*, the power set of *S*, denoted $\mathcal{P}(S)$, is the set of all subsets of *S*

• If
$$|S| = n$$
, then $|\mathcal{P}(S)| = 2^n$

- <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.
- <u>Definition</u>: Given a set S, the power set of S, denoted P(S), is the set of all subsets of S
 - If |S| = n, then $|\mathcal{P}(S)| = 2^n$
- *Remark:* For every set *S*,
 - $\emptyset \subseteq S$
 - *S* ⊆ *S*

- <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.
- <u>Definition</u>: Given a set *S*, the power set of *S*, denoted $\mathcal{P}(S)$, is the set of all subsets of *S*
 - If |S| = n, then $|\mathcal{P}(S)| = 2^n$
- Example: Let $S = \{0, 1, 2\}$

$$\mathcal{P}(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \\ = \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

- <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.
- <u>Definition</u>: Given a set S, the power set of S, denoted P(S), is the set of all subsets of S

• If
$$|S| = n$$
, then $|\mathcal{P}(S)| = 2^n$

• Example: Let
$$S = \{0, 1, 2\}$$

$$\mathcal{P}(S) = \{\emptyset, \{0\}, \{1\}, \{2\}, \\ = \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

• $|S| = 3$ and $|\mathcal{P}(S)| = 8 = 2^3$

- <u>Definition</u>: Let *S* be a set. If there are exactly $n \in \mathbb{N}$ distinct elements in *S*, then the cardinality of *S* is *n*, denoted |S| = n.
- <u>Definition</u>: Given a set *S*, the power set of *S*, denoted $\mathcal{P}(S)$, is the set of all subsets of *S*
 - If |S| = n, then $|\mathcal{P}(S)| = 2^n$
- *Remark:* If a set is not finite, then it is infinite.
 - Example:
 - The set of all integers $\mathbb Z$ is infinite
 - The set of all real numbers ${\rm I\!R}$ is infinite
 - In Section 2.5, we discuss the cardinality of infinite sets

Cartesian Product

- <u>Definition</u>: An ordered *n*-tuple, denoted (*a*₁, *a*₂, ..., *a_n*), is an ordered collection of elements
- <u>Definition</u>: The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \ldots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where $a_i \in A_i$ for $i = 1, 2, \ldots, n$

$$A_1 \times A_2 \times \ldots \times A_n$$

={ $(a_1, a_2, \ldots, a_n) : a_i \in A_i \text{ for } i = 1, 2, \ldots, n$ }

Cartesian Product

• <u>Ex:</u>

- 1. $A = \{1, 2\}$ and $B = \{a, b, c\}$
 - $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
 - $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$
 - Note: Order of the sets in the Cartesian product matters!

2.
$$A = \{1, 2\}$$

• $A \times A = A^2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
• $A \times A \times A = A^3 = \{(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 2, 2), (2, 1, 1), (2, 2, 2), (2, 1, 1), (2, 2, 2), (2, 2, 1), (2, 2, 2)\}$

Set Notation with Quantifiers

- <u>Recall</u>: Using quantifiers, we can limit the domain by providing additional conditions that the elements of a domain must satisfy.
 - Ex: Domain is all real numbers, \mathbb{R}
 - Restrict domain to "all real numbers less than 0."

 $\forall x < 0 (x^2 \ge 0)$

Set Notation with Quantifiers

- <u>Recall</u>: Using quantifiers, we can limit the domain by providing additional conditions that the elements of a domain must satisfy.
 - Ex: Domain is all real numbers, \mathbb{R}
 - Restrict domain to "all real numbers less than 0."

$$orall x < 0 (x^2 \ge 0)$$

 $\equiv orall x \in \mathbb{R}^- (x^2 \ge 0)$

Set Notation with Quantifiers

- <u>Recall</u>: Using quantifiers, we can limit the domain by providing additional conditions that the elements of a domain must satisfy.
 - Ex: Domain is all real numbers, \mathbb{R}
 - Restrict domain to "all real numbers less than 0."

$$orall x < 0 (x^2 \ge 0) \ \equiv orall x \in \mathbb{R}^- (x^2 \ge 0)$$

 <u>Remark</u>: Typically, instead of stating the domain in english (as we have seen in Chapter 1), we use set notation to state the domain

• Ex:
$$\exists x \in \mathbb{Z}(x^2 = 1)$$