

Ch 1.8: Proof Methods and Strategy

ICS 141: Discrete Mathematics for Computer Science I

Kyle Berney Department of ICS, University of Hawaii at Manoa

Kyle Berney – Ch 1.8: Proof Methods and Strategy

- A proof by cases shows that a proposition is true by considering different cases separately.
- Let *n* be an non-negative integer.
- Aims to prove conditional statement to of the form:

 $(P_1 \vee P_2 \vee \cdots \vee P_n) \Rightarrow Q$

By proving each of the cases *n* cases:

 $(P_1 \Rightarrow Q) \land (P_2 \Rightarrow Q) \land \cdots \land (P_n \Rightarrow Q)$

• Proposition: If *n* is an integer such that $n \neq 0$, then $n^2 - n$ is even.

- Proposition: If *n* is an integer such that $n \neq 0$, then $n^2 n$ is even.
- Proof:

- Proposition: If *n* is an integer such that $n \neq 0$, then $n^2 n$ is even.
- <u>Proof</u>: Let *n* be an arbitrary integer such that $n \neq 0$.

- Proposition: If *n* is an integer such that $n \neq 0$, then $n^2 n$ is even.
- <u>Proof:</u> Let *n* be an arbitrary integer such that $n \neq 0$. <u>Case 1:</u> Assume *n* is even so that for some integer *k*, n = 2k. $n^2 - n = (2k)^2 - 2k$ $= 4k^2 - 2k$ $= 2(2k^2 - k)$ = 2k', for some integer $k' = 2k^2 - k$.

By definition of an even integer, $n^2 - n$ is even.

- Proposition: If *n* is an integer such that $n \neq 0$, then $n^2 n$ is even.
- Proof: Let *n* be an arbitrary integer such that $n \neq 0$. Case 2: Assume *n* is odd so that for some integer *k*, n = 2k + 1. $n^{2} - n = (2k + 1)^{2} - (2k + 1)^{2}$ $=4k^{2}+4k+1-2k-1$ $= 4k^2 + 2k$ $= 2(2k^2 + k)$ = 2k', for some integer $k' = 2k^2 + k$. By definition of an even integer, $n^2 - n$ is even.

- An exhausive proofs are used to prove propositions with a relatively small number of cases.
- Individually prove each case with specific values.

• Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.

• Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.

Proof:

- Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.
- <u>Proof</u>: Let *n* be an arbitrary positive integer such that $n \leq 4$.

- Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.
- <u>Proof</u>: Let *n* be an arbitrary positive integer such that $n \le 4$. <u>Case 1</u>: Let n = 1.

$$(n+1)^3 \ge 3^n$$

 $\Rightarrow 2^3 \ge 3^1$
 $\Rightarrow 8 \ge 3$.

- Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.
- <u>Proof</u>: Let *n* be an arbitrary positive integer such that $n \le 4$. <u>Case 2</u>: Let n = 2.

$$(2+1)^3 \ge 3^n$$

 $\Rightarrow 3^3 \ge 3^2$
 $\Rightarrow 27 \ge 9$.

- Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.
- <u>Proof</u>: Let *n* be an arbitrary positive integer such that $n \le 4$. <u>Case 3</u>: Let n = 3.

 $(3+1)^3 \ge 3^n$ $\Rightarrow 4^3 \ge 3^3$ $\Rightarrow 64 \ge 27$.

- Proposition: If *n* is a positive integer such that $n \le 4$ then $(n+1)^3 \ge 3^n$.
- <u>Proof</u>: Let *n* be an arbitrary positive integer such that $n \le 4$. <u>Case 4</u>: Let n = 4.

$$(4 + 1)^3 \ge 4^n$$

 $\Rightarrow 5^3 \ge 3^4$
 $\Rightarrow 125 \ge 81$.

• Proposition: Show that for all real numbers x and y,

|XY| = |X||Y|

- Proposition: Show that for all real numbers x and y, |xy| = |x||y|
- Proof:

- <u>Proposition</u>: Show that for all real numbers x and y, |xy| = |x||y|
- Proof: Let x and y be arbitrary real numbers.

- <u>Proposition</u>: Show that for all real numbers x and y, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a.

- Proposition: Show that for all real numbers x and y, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

- <u>Proposition</u>: Show that for all real numbers *x* and *y*, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

Case 1: Assume
$$x \ge 0$$
 and $y \ge 0$.Case 2: Assume $x \ge 0$ and $y < 0$.Case 3: Assume $x < 0$ and $y \ge 0$.Case 4: Assume $x < 0$ and $y < 0$.

- <u>Proposition</u>: Show that for all real numbers *x* and *y*, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

<u>Case 1:</u> Assume $x \ge 0$ and $y \ge 0$. Since xy is non-negative, |xy| = xy = |x||y|.

- <u>Proposition</u>: Show that for all real numbers x and y, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

<u>Case 2:</u> Assume $x \ge 0$ and y < 0. Since xy is negative, |xy| = -xy = x(-y) = |x||y|.

- <u>Proposition</u>: Show that for all real numbers *x* and *y*, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

<u>Case 3:</u> Assume x < 0 and $y \ge 0$. Since xy is negative, |xy| = -xy = (-x)y = |x||y|.

- <u>Proposition</u>: Show that for all real numbers *x* and *y*, |xy| = |x||y|
- <u>Proof</u>: Let *x* and *y* be arbitrary real numbers. Note that for any real number *a*, if $a \ge 0$ then |a| = a. Similarly, if a < 0 then |a| = -a. We consider 4 cases.

<u>Case 4:</u> Assume x < 0 and y < 0. Since xy is non-negative, |xy| = xy = (-x)(-y) = |x||y|.

Without Loss of Generality

- In the previous proposition (Slide 6), Case 2 and Case 3 are almost identical
 - Roles of x and y are switched based on which variable is negative.

<u>Case 2:</u> Assume $x \ge 0$ and y < 0. Since xy is negative, |xy| = -xy = x(-y) = |x||y|.

<u>Case 3:</u> Assume x < 0 and $y \ge 0$. Since xy is negative,

$$|xy| = -xy = (-x)y = |x||y|$$
.

Without Loss of Generality

- The phrase "without loss of generality" is used in proofs to simplify arguments by focusing on one specific case, with the understanding that the remaining case(s) follow the same reasoning
- Used frequently for:
 - Symmetric cases
 - Redundant cases

Without Loss of Generality

We can combine Case 2 and Case 3

<u>Case 2:</u> Without loss of generality, assume $x \ge 0$ and y < 0. Since xy is negative,

$$|xy| = -xy = x(-y) = |x||y|$$
.

• Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.

Proof:

• Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.

Proof:

Hint #1: Use a proof by contraposition. Recall that

$$(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$$

• Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.

Proof:

Hint #1: Use a proof by contraposition. Recall that

$$(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$$

Hint #2: Use proof by cases and "without loss of generality"

- Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.
- <u>Proof:</u> Let *x* and *y* be arbitrary integers. We proceed with proof by contraposition. Assume *x* and *y* are not both even. That is, either *x* or *y* is odd or both are (but not both even). Without loss of generality, assume *x* is odd such that x = 2a + 1 for some integer *a*.

- Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.
- <u>Proof:</u> Let *x* and *y* be arbitrary integers. We proceed with proof by contraposition. Assume *x* and *y* are not both even. That is, either *x* or *y* is odd or both are (but not both even). Without loss of generality, assume *x* is odd such that x = 2a + 1 for some integer *a*.

<u>Case 1:</u> Assume y is even so that there exists an integer b such y = 2b.

- Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.
- <u>Proof:</u> Let *x* and *y* be arbitrary integers. We proceed with proof by contraposition. Assume *x* and *y* are not both even. That is, either *x* or *y* is odd or both are (but not both even). Without loss of generality, assume *x* is odd such that *x* = 2*a* + 1 for some integer *a*.

<u>Case 1:</u> Assume y is even so that there exists an integer b such y = 2b.

$$x + y = (2a + 1) + (2b)$$

= 2a + 2b + 1
= 2(a + b) + 1.
By definition, x + y is odd.

Kyle Berney – Ch 1.8: Proof Methods and Strategy

- Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.
- <u>Proof:</u> Let *x* and *y* be arbitrary integers. We proceed with proof by contraposition. Assume *x* and *y* are not both even. That is, either *x* or *y* is odd or both are (but not both even). Without loss of generality, assume *x* is odd such that x = 2a + 1 for some integer *a*.

<u>Case 2</u>: Assume y is odd so that there exists an integer b such y = 2b + 1.

- Proposition: Let x and y be integers. If xy and x + y are both even, then x and y are also both even.
- <u>Proof:</u> Let *x* and *y* be arbitrary integers. We proceed with proof by contraposition. Assume *x* and *y* are not both even. That is, either *x* or *y* is odd or both are (but not both even). Without loss of generality, assume *x* is odd such that x = 2a + 1 for some integer *a*.

<u>Case 2</u>: Assume y is odd so that there exists an integer b such y = 2b + 1.

$$xy = (2a + 1)(2b + 1)$$

= 2ab + 2a + 2b + 1
= 2(ab + a + b) + 1.
By definition, xy is odd. ■

- An existance proof is used to prove propositions of the form $\exists x(P(x))$
- A <u>constructive</u> existance proof aims to find an element *a* such that *P(a)* is true
- A <u>nonconstructive</u> existance proof uses indirect proof methods such as proof by contradiction

 Proposition: There exists a positive integer that can be written as the sum of cubes of positive integers in two different ways.

- Proposition: There exists a positive integer that can be written as the sum of cubes of positive integers in two different ways.
- <u>Proof:</u> $1729 = 1000 + 729 = 10^3 + 9^3$ = $1728 + 1 = 12^3 + 1^3$.

We showed that 1729 can be written as the sum of cubes of positive integers in two different ways.

• Proposition: There exists irrational number x and y such that $\overline{x^{y}}$ is rational.

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

<u>Case 1:</u> Assume $\sqrt{2}^{\sqrt{2}}$ is rational.

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

<u>Case 1:</u> Assume $\sqrt{2}^{\sqrt{2}}$ is rational. Then we have shown that for $x = \sqrt{2}$ and $y = \sqrt{2}$, $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

<u>Case 2:</u> Assume $\sqrt{2}^{\sqrt{2}}$ is irrational.

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.

<u>Case 2</u>: Assume $\sqrt{2}^{\sqrt{2}}$ is irrational. Let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$,

- Proposition: There exists irrational number x and y such that x^y is rational.
- <u>Proof</u>: Recall that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$

<u>Case 2:</u> Assume $\sqrt{2}^{\sqrt{2}}$ is irrational. Let $x = \sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2},$ $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$ $=\left(\sqrt{2}^{\sqrt{2}\cdot\sqrt{2}}\right)$ $=\sqrt{2}^{2}$ = 2, which is rational.

- A <u>uniqueness proof</u> is used to prove propositions of the form $\exists ! x(P(x))$
- Need to show
 - Existence: an element x with P(x) exists.
 - Uniqueness: If element x and y with P(x) and P(y) exists,
 then x and y are the same element, i.e.,

$$X = Y$$

• Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Assume *a* and *b* are arbitrary real numbers such that $a \neq 0$.

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Assume *a* and *b* are arbitrary real numbers such that $a \neq 0$. Let *r* be a real number such that r = -b/a.

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Assume *a* and *b* are arbitrary real numbers such that $a \neq 0$. Let *r* be a real number such that r = -b/a. Notice that,

$$ar + b = a(-b/a) + b$$
$$= -b + b$$
$$= 0.$$

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Assume *a* and *b* are arbitrary real numbers such that $a \neq 0$. Let *r* be a real number such that r = -b/a. Notice that,

$$ar + b = a(-b/a) + b$$
$$= -b + b$$

= 0.

Therefore, an element *r* that satisfies the proposition exists.

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Let *s* be an arbitrary real number such that as + b = 0.

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Let *s* be an arbitrary real number such that as + b = 0.

ar + b = as + b $\Rightarrow ar = as$ $\Rightarrow r = s . \blacksquare$

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Let *s* be an arbitrary real number such that as + b = 0.

ar + b = as + b $\Rightarrow ar = as$ $\Rightarrow r = s . \blacksquare$

Question: Is there another way to show that r = s?

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Let *s* be an arbitrary real number such that as + b = 0.

```
ar + b = as + b
\Rightarrow ar = as
\Rightarrow r = s . \blacksquare
```

- *Question:* Is there another way to show that r = s?
 - Yes! Using systems of linear equations

- Proposition: If a and b are real numbers such that $a \neq 0$, then there is a unique real number r such that ar + b = 0.
- <u>Proof</u>: Let *s* be an arbitrary real number such that as + b = 0.

$$(ar + b = 0)$$

- $(as + b = 0)$
 $a(r - s) = 0$
 $r - s = 0$
 $r = s$.

Exercise

Proposition: Let x and y be real numbers.

 $\max(x, y) + \min(x, y) = x + y$

Exercise

• Proposition: Let *x* and *y* be real numbers.

$$\min(x, y) = \frac{x + y - |x - y|}{2}$$

and
$$\max(x, y) = \frac{x + y + |x - y|}{2}$$

Exercise

Proposition: Let x and y be real numbers. Prove the triangle inequality

 $|x|+|y|\geq |x+y|$