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Proof by Cases

A proof by cases shows that a proposition is true by
considering different cases separately.
Let n be an non-negative integer.
Aims to prove conditional statement to of the form:

(P1 ∨ P2 ∨ · · · ∨ Pn) ⇒ Q

By proving each of the cases n cases:
(P1 ⇒ Q) ∧ (P2 ⇒ Q) ∧ · · · ∧ (Pn ⇒ Q)
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Proof by Cases

Proposition: If n is an integer such that n ̸= 0, then n2 − n is
even.
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Proof by Cases

Proposition: If n is an integer such that n ̸= 0, then n2 − n is
even.

Proof:
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Proof by Cases

Proposition: If n is an integer such that n ̸= 0, then n2 − n is
even.

Proof: Let n be an arbitrary integer such that n ̸= 0.
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Proof by Cases

Proposition: If n is an integer such that n ̸= 0, then n2 − n is
even.

Proof: Let n be an arbitrary integer such that n ̸= 0.

Case 1: Assume n is even so that for some integer k , n = 2k .

n2 − n = (2k )2 − 2k

= 4k2 − 2k

= 2(2k2 − k )

= 2k ′, for some integer k ′ = 2k2 − k .

By definition of an even integer, n2 − n is even.
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Proof by Cases

Proposition: If n is an integer such that n ̸= 0, then n2 − n is
even.

Proof: Let n be an arbitrary integer such that n ̸= 0.

Case 2: Assume n is odd so that for some integer k ,
n = 2k + 1.

n2 − n = (2k + 1)2 − (2k + 1)

= 4k2 + 4k + 1 − 2k − 1

= 4k2 + 2k

= 2(2k2 + k )

= 2k ′, for some integer k ′ = 2k2 + k .

By definition of an even integer, n2 − n is even. ■
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Exhaustive Proof

An exhausive proofs are used to prove propositions with a
relatively small number of cases.
Individually prove each case with specific values.



Kyle Berney – Ch 1.8: Proof Methods and Strategy 5 - 1

Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof:
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof: Let n be an arbitrary positive integer such that n ≤ 4.
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof: Let n be an arbitrary positive integer such that n ≤ 4.

Case 1: Let n = 1.
(n + 1)3 ≥ 3n

⇒ 23 ≥ 31

⇒ 8 ≥ 3 .
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof: Let n be an arbitrary positive integer such that n ≤ 4.

Case 2: Let n = 2.
(2 + 1)3 ≥ 3n

⇒ 33 ≥ 32

⇒ 27 ≥ 9 .
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof: Let n be an arbitrary positive integer such that n ≤ 4.

Case 3: Let n = 3.
(3 + 1)3 ≥ 3n

⇒ 43 ≥ 33

⇒ 64 ≥ 27 .
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Exhausive Proofs

Proposition: If n is a positive integer such that n ≤ 4 then
(n + 1)3 ≥ 3n.

Proof: Let n be an arbitrary positive integer such that n ≤ 4.

Case 4: Let n = 4.
(4 + 1)3 ≥ 4n

⇒ 53 ≥ 34

⇒ 125 ≥ 81 .■
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof:



Kyle Berney – Ch 1.8: Proof Methods and Strategy 6 - 3

Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers.
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a.
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.

Case 1: Assume x ≥ 0 and y ≥ 0.
Case 2: Assume x ≥ 0 and y < 0.
Case 3: Assume x < 0 and y ≥ 0.
Case 4: Assume x < 0 and y < 0.
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.

Case 1: Assume x ≥ 0 and y ≥ 0. Since xy is non-negative,
|xy | = xy = |x ||y | .
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.

Case 2: Assume x ≥ 0 and y < 0. Since xy is negative,
|xy | = −xy = x(−y ) = |x ||y | .
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.

Case 3: Assume x < 0 and y ≥ 0. Since xy is negative,
|xy | = −xy = (−x)y = |x ||y | .
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Proof by Cases

Proposition: Show that for all real numbers x and y ,
|xy | = |x ||y |

Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a ≥ 0 then |a| = a. Similarly, if a < 0
then |a| = −a. We consider 4 cases.

Case 4: Assume x < 0 and y < 0. Since xy is non-negative,
|xy | = xy = (−x)(−y ) = |x ||y | .■
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Without Loss of Generality

In the previous proposition (Slide 6), Case 2 and Case 3 are
almost identical

Roles of x and y are switched based on which variable is
negative.

Case 3: Assume x < 0 and y ≥ 0. Since xy is negative,
|xy | = −xy = (−x)y = |x ||y | .

Case 2: Assume x ≥ 0 and y < 0. Since xy is negative,
|xy | = −xy = x(−y ) = |x ||y | .
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Without Loss of Generality

The phrase “without loss of generality” is used in proofs to
simplify arguments by focusing on one specific case, with the
understanding that the remaining case(s) follow the same
reasoning
Used frequently for:

Symmetric cases
Redundant cases
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Without Loss of Generality

We can combine Case 2 and Case 3

Case 2: Without loss of generality, assume x ≥ 0 and y < 0.
Since xy is negative,

|xy | = −xy = x(−y ) = |x ||y | .
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof:
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof:

Hint #1: Use a proof by contraposition. Recall that
(P ⇒ Q) ≡ (¬Q ⇒ ¬P)
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof:

Hint #1: Use a proof by contraposition. Recall that
(P ⇒ Q) ≡ (¬Q ⇒ ¬P)

Hint #2: Use proof by cases and “without loss of generality”

Proof:
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that
x = 2a + 1 for some integer a.
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that
x = 2a + 1 for some integer a.
Case 1: Assume y is even so that there exists an integer b
such y = 2b.
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that
x = 2a + 1 for some integer a.
Case 1: Assume y is even so that there exists an integer b
such y = 2b.

x + y = (2a + 1) + (2b)

= 2a + 2b + 1

= 2(a + b) + 1 .
By definition, x + y is odd.
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that
x = 2a + 1 for some integer a.
Case 2: Assume y is odd so that there exists an integer b
such y = 2b + 1.
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Exercise

Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that
x = 2a + 1 for some integer a.
Case 2: Assume y is odd so that there exists an integer b
such y = 2b + 1.

xy = (2a + 1)(2b + 1)

= 2ab + 2a + 2b + 1

= 2(ab + a + b) + 1 .
By definition, xy is odd. ■
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Existence Proofs

An existance proof is used to prove propositions of the form

∃x(P(x))

A constructive existance proof aims to find an element a such
that P(a) is true
A nonconstructive existance proof uses indirect proof
methods such as proof by contradiction
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Existence Proofs

Proposition: There exists a positive integer that can be written
as the sum of cubes of positive integers in two different ways.
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Existence Proofs

Proposition: There exists a positive integer that can be written
as the sum of cubes of positive integers in two different ways.

Proof: 1729 = 1000 + 729 = 103 + 93

= 1728 + 1 = 123 + 13 .
We showed that 1729 can be written as the sum of cubes of
positive integers in two different ways. ■
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Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.
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Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.
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Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.

Case 1: Assume
√

2
√

2
is rational.
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Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.

Case 1: Assume
√

2
√

2
is rational. Then we have shown that

for x =
√

2 and y =
√

2, xy =
√

2
√

2
is rational.



Kyle Berney – Ch 1.8: Proof Methods and Strategy 13 - 5

Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.

Case 2: Assume
√

2
√

2
is irrational.



Kyle Berney – Ch 1.8: Proof Methods and Strategy 13 - 6

Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.

Case 2: Assume
√

2
√

2
is irrational.Case 2: Assume

√
2
√

2
is irrational. Let x =

√
2
√

2
and

y =
√

2,
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Existence Proofs

Proposition: There exists irrational number x and y such that
xy is rational.

Proof: Recall that
√

2 is irrational. Consider the number
√

2
√

2
.

Case 2: Assume
√

2
√

2
is irrational.Case 2: Assume

√
2
√

2
is irrational. Let x =

√
2
√

2
and

y =
√

2,
xy =

(√
2
√

2
)√

2

=
(√

2
√

2·
√

2
)

=
√

2
2

= 2 , which is rational. ■
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Uniqueness Proofs

A uniqueness proof is used to prove propositions of the form

∃!x(P(x))

Need to show

Existence: an element x with P(x) exists.
Uniqueness: If element x and y with P(x) and P(y ) exists,
then x and y are the same element, i.e.,

x = y
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Assume a and b are arbitrary real numbers such that
a ̸= 0.
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Assume a and b are arbitrary real numbers such that
a ̸= 0. Let r be a real number such that r = −b/a.
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Assume a and b are arbitrary real numbers such that
a ̸= 0. Let r be a real number such that r = −b/a. Notice
that,

ar + b = a(−b/a) + b

= −b + b

= 0 .
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Assume a and b are arbitrary real numbers such that
a ̸= 0. Let r be a real number such that r = −b/a. Notice
that,

ar + b = a(−b/a) + b

= −b + b

= 0 .
Therefore, an element r that satisfies the proposition exists.
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Let s be an arbitrary real number such that as + b = 0.
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Let s be an arbitrary real number such that as + b = 0.

ar + b = as + b

⇒ ar = as

⇒ r = s .■



Kyle Berney – Ch 1.8: Proof Methods and Strategy 15 - 8

Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Let s be an arbitrary real number such that as + b = 0.

ar + b = as + b

⇒ ar = as

⇒ r = s .■

Question: Is there another way to show that r = s?
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Let s be an arbitrary real number such that as + b = 0.

ar + b = as + b

⇒ ar = as

⇒ r = s .■

Question: Is there another way to show that r = s?Question: Is there another way to show that r = s?

Yes! Using systems of linear equations
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Uniqueness Proofs

Proposition: If a and b are real numbers such that a ̸= 0, then
there is a unique real number r such that ar + b = 0.

Proof: Let s be an arbitrary real number such that as + b = 0.

(ar + b = 0)
− (as + b = 0)

a(r − s) = 0
r − s = 0

r = s .■
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Exercise

Proposition: Let x and y be real numbers.

max(x , y ) + min(x , y ) = x + y
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Exercise

Proposition: Let x and y be real numbers.

min(x , y ) =
x + y − |x − y |

2

max(x , y ) =
x + y + |x − y |

2and
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Exercise

Proposition: Let x and y be real numbers. Prove the triangle
inequality

|x | + |y | ≥ |x + y |


