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Proof by Cases

= A proof by cases shows that a proposition is true by
considering different cases separately.

= Let nbe an non-negative integer.

s Aims to prove conditional statement to of the form:

(P1VPV---VPy)=Q
s By proving each of the cases n cases:
(Pi=QAPo=QAN---N(P,= Q)

Kyle Berney — Ch 1.8: Proof Methods and Strategy



Proof by Cases

s Proposition: If nis an integer such that n # 0, then n* — niis
even.
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Proof by Cases

s Proposition: If nis an integer such that n # 0, then n* — niis
even.

s Proof:
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Proof by Cases

s Proposition: If nis an integer such that n # 0, then n* — niis
even.

= Proof: Let n be an arbitrary integer such that n # 0.
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Proof by Cases

s Proposition: If nis an integer such that n # 0, then n* — niis
even.

= Proof: Let n be an arbitrary integer such that n # 0.
Case 1: Assume nis even so that for some integer k, n = 2k.

n* — n = (2k)* — 2k
= 4k* — 2k
= 2(2k? — k)
= 2k’, for some integer k' = 2k* — k .

By definition of an even integer, i* — nis even.
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Proof by Cases

s Proposition: If nis an integer such that n # 0, then n* — niis
even.

= Proof: Let n be an arbitrary integer such that n # 0.

Case 2: Assume nis odd so that for some integer k,
n=2k+1.
" —n=2k+1)°— 2k +1)

=4k® + 4k +1 — 2k — 1
= 4k® + 2k
= 2(2k® + k)

= 2k’, for some integer k' = 2k* + k .

By definition of an even integer, n> — nis even. &
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Exhaustive Proof

= An exhausive proofs are used to prove propositions with a
relatively small number of cases.
= Individually prove each case with specific values.
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

s Proof:
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

= Proof: Let n be an arbitrary positive integer such that n < 4.
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

= Proof: Let n be an arbitrary positive integer such that n < 4.
Case 1:Letn=1.

(n+1)° > 3"

— 23 > 3
— 8> 3.
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

= Proof: Let n be an arbitrary positive integer such that n < 4.
Case 2: Let n = 2.

2+1) > 3"

— 3% > 3°
— 27>9.
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

= Proof: Let n be an arbitrary positive integer such that n < 4.
Case 3: Let n = 3.

(3+1)° > 3"

= 4% > 3°
= 64 > 27 .
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Exhausive Proofs

s Proposition: If nis a positive integer such that n < 4 then
(n+1)% > 3".

= Proof: Let n be an arbitrary positive integer such that n < 4.

Case 4: Let n=4.
(4+1)° > 4"

— 5 > 34
= 125 > 81 N
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

s Proof:
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers.
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0

then |a| = —a.
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.

Case 1: Assume x > 0and y > 0.
Case 2: Assume x > 0and y < 0.
Case 3: Assume x < 0and y > 0.
Case 4: Assume x < 0and y < 0.
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.

Case 1: Assume x > 0 and y > 0. Since xy is non-negative,
xy| =xy = |x]ly] .
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.

Case 2: Assume x > 0 and y < 0. Since xy is negative,
xy| = —xy =x(=y) = |x]|y] .
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.

Case 3: Assume x < 0 and y > 0. Since xy is negative,
xy| = —xy = (=x)y = |x]|y| .
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Proof by Cases

= Proposition: Show that for all real numbers x and y,
xy| = |x|ly]

= Proof: Let x and y be arbitrary real numbers. Note that for
any real number a, if a > 0 then |a| = a. Similarly, if a < 0
then |a| = —a. We consider 4 cases.

Case 4: Assume x < 0 and y < 0. Since xy is non-negative,
xy| =xy = (=x)(=y) = |x||y| .
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Without Loss of Generality

= |In the previous proposition (Slide 6), Case 2 and Case 3 are
almost identical

= Roles of x and y are switched based on which variable is
negative.

Case 2: Assume x > 0 and y < 0. Since xy is negative,
xy| = —xy =x(=y) =[xyl .

Case 3: Assume x < 0 and y > 0. Since xy is negative,
xy| = —xy = (=x)y = |x]|y] .
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Without Loss of Generality

s The phrase “without loss of generality” is used in proofs to

simplify arguments by focusing on one specific case, with the
understanding that the remaining case(s) follow the same
reasoning

= Used frequently for:

= Symmetric cases
= Redundant cases
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Without Loss of Generality

s We can combine Case 2 and Case 3

Case 2: Without loss of generality, assume x > 0 and y < 0.
Since xy is negative,

xy| = —xy = x(—y) = |x||y]| -
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof:
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof:

Hint #1: Use a proof by contraposition. Recall that
(P= Q) =(—Q= —P)
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof:

Hint #1: Use a proof by contraposition. Recall that
(P= Q) =(—Q= —P)

Hint #2: Use proof by cases and “without loss of generality”
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that

x = 2a+ 1 for some integer a.
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that

x = 2a+ 1 for some integer a.
Case 1: Assume y is even so that there exists an integer b
such y = 2b.
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that

x = 2a+ 1 for some integer a.
Case 1: Assume y is even so that there exists an integer b
such y = 2b.

X+y=(2a+1)+(2b)
=2a+2b+ 1

=2(a+b)+1.
By definition, x + y is odd.
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that

x = 2a+ 1 for some integer a.
Case 2: Assume y is odd so that there exists an integer b
such y =2b +1.
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Exercise

s Proposition: Let x and y be integers. If xy and x + y are both
even, then x and y are also both even.

s Proof: Let x and y be arbitrary integers. We proceed with
proof by contraposition. Assume x and y are not both even.
That is, either x or y is odd or both are (but not both even).
Without loss of generality, assume x is odd such that

x = 2a+ 1 for some integer a.
Case 2: Assume y is odd so that there exists an integer b

such y =2b +1.
xy =((2a+1)2b+1)

=2ab + 2a+2b + 1

=2(ab+a+b)+1.
By definition, xy is odd.
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Existence Proofs

= An existance proof is used to prove propositions of the form
3Ax(P(x))

= A constructive existance proof aims to find an element a such
that P(a) is true

s A nonconstructive existance proof uses indirect proof
methods such as proof by contradiction
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Existence Proofs

s Proposition: There exists a positive integer that can be written
as the sum of cubes of positive integers in two different ways.
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Existence Proofs

s Proposition: There exists a positive integer that can be written
as the sum of cubes of positive integers in two different ways.

= Proof: 1729 = 1000 + 729 = 10° + 9°

= 1728 +1 =123 + 13,
We showed that 1729 can be written as the sum of cubes of

positive integers in two different ways. B
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that v/2 is irrational. Consider the number
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that \/§ IS irrational. Consider the number
\@ﬁ.

2
Case 1: Assume \/Ef is rational.
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that \/§ IS irrational. Consider the number
\@ﬁ.

Case 1: Assume \/5\@ IS rational. Then we have shown that

forx =v2and y = V2, x¥ = \/5\@ is rational.
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that \/§ IS irrational. Consider the number
\@ﬁ.

2
Case 2: Assume \/Ef is irrational.
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that \/§ IS irrational. Consider the number
\@ﬁ.

Case 2: Assume \/5\@ IS Irrational. Let x = \/5\@ and

y =2,
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Existence Proofs

s Proposition: There exists irrational number x and y such that
x7 is rational.

s Proof: Recall that \/§ IS irrational. Consider the number
\@ﬁ.

Case 2: Assume \/5\@ IS Irrational. Let x = \/5\@ and
V2

- (4
(=™

_ /2

=2 , which is rational. B

y =2,
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Unigueness Proofs

= A uniqueness proof is used to prove propositions of the form
3Ix(P(x))

s Need to show

s Existence: an element x with P(x) exists.
» Uniqueness: If element x and y with P(x) and P(y) exists,
then x and y are the same element, i.e.,

X=Yy
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.
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Unigueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Assume a and b are arbitrary real numbers such that

a+0.
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Assume a and b are arbitrary real numbers such that
a#0. Let r be a real number such that r = —b/a.
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Assume a and b are arbitrary real numbers such that
a# 0. Let r be a real number such that r = —b/a. Notice

that,
ar+b=a(—b/a)+b

=—b+b
=0.
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Assume a and b are arbitrary real numbers such that
a# 0. Let r be a real number such that r = —b/a. Notice

that,
ar+b=a(—b/a)+b

=—b+b

=0.
Therefore, an element r that satisfies the proposition exists.
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Unigueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Let s be an arbitrary real number such that as + b = 0.
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Unigueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Let s be an arbitrary real number such that as + b = 0.
ar+b=as+b
= ar = as
=r=5.1
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Let s be an arbitrary real number such that as + b = 0.

ar+b=as+0>b
= ar = as
=r=5.1

Question: |s there another way to show that r = s?
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Uniqueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Let s be an arbitrary real number such that as + b = 0.
ar+b=as+b
= ar = as
=r=5.1

s Question: Is there another way to show that r = s?
s Yes! Using systems of linear equations
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Unigueness Proofs

s Proposition: If a and b are real numbers such that a # 0, then
there is a unique real number r such that ar + b = 0.

= Proof: Let s be an arbitrary real number such that as + b = 0.

(ar + b =0)
—(as+ b =0)
alr—s)=0

r—s=0
r=s.m
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Exercise

s Proposition: Let x and y be real numbers.

max(X, y) +min(x,y)=x+Yy
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Exercise

s Proposition: Let x and y be real numbers.
X+y—|x—y
2
X+y+|x—y
2

min(x, y) =

max(Xx, y) =
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Exercise

s Proposition: Let x and y be real numbers. Prove the triangle
inequality

x|+ |yl > [x +y]
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