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Proofs

= A proof is a valid argument that establishes the truth of a
mathematical statement
= [0 construct a proof, we can use:

= Hypotheses of the statement
= Axioms (fundamental statements we assume to be true)
= Previously proven statements
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Proof Writing Conventions

= Proofs are written using first person plural

= [radition
= Suggests a collaborative reasoning between the reader
and writer

Kyle Berney — Ch 1.7: Introduction to Proofs



Proof Writing Conventions

= Proofs are written using first person plural

= [radition

= Suggests a collaborative reasoning between the reader
and writer

s Common phrases:

1. Starting a train of thought
= “Assume that ..”
“We begin by ..”
“Let us consider ...”
“We are given that ..”
“Suppose that ...
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Proof Writing Conventions

= Proofs are written using first person plural

= [radition
= Suggests a collaborative reasoning between the reader
and writer

s Common phrases:

2. Making Observations
= “We observe that ..”
= “Notice that ..”

» “We see that ..”
= “We note that ...
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Proof Writing Conventions

= Proofs are written using first person plural

= [radition
= Suggests a collaborative reasoning between the reader
and writer

s Common phrases:

3. Applying definitions or known results
= “By definition ...
= “From Theorem ..., we know that ..”
= “We use the fact that ...”
» “Recall that ..”
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Proof Writing Conventions

= Proofs are written using first person plural

= [radition
= Suggests a collaborative reasoning between the reader
and writer

s Common phrases:

4. Concluding the proof
= “We have shown that ...”
» “Therefore, ..
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Proof Writing Conventions

s At the end of a proof we write Bl or L] (tombstone symbols)

= [radition
= Formality
» Clarity

s Historically, “Q.E.D.” was used

» Latin phrase, “Quod Erat Demonstrandum”
= [ranslates to “that which was to be demonstrated” or
“what was to be shown”
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use

= A theorem is a statement that can be proven and often
represents a significant result
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use

= Atheorem is a statement that can be proven and often
represents a significant result

= A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use

= Atheorem is a statement that can be proven and often
represents a significant result

= A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest

= Alemma is a preliminary result that can be proven and
assists in proving a proposition or theorem
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use

= Atheorem is a statement that can be proven and often
represents a significant result

= A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest

= Alemma is a preliminary result that can be proven and
assists in proving a proposition or theorem

= A corollary is a result that follows directly from a theorem
or another proven statement
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Terminology

s Different terms are used to describe various mathematical
statements, generally based on the importance or use

= A theorem is a statement that can be proven and often
represents a significant result
A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
A lemma is a preliminary result that can be proven and
assists in proving a proposition or theorem
A corollary is a result that follows directly from a theorem
or another proven statement
A conjecture is a statement that is being proposed as a
true statement based on evidence or intuition
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Direct Proofs

= A direct proof is a method of proving a mathematical
statement by following a sequence of logical steps that
follows directly from the assumptions to the statement being
proven.
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Direct Proofs

= A direct proof is a method of proving a mathematical
statement by following a sequence of logical steps that
follows directly from the assumptions to the statement being
proven.

= To prove a conditional statement P = Q
. Assume the hypothesis, P, is true

. Use definitions, axioms, and other previously proven
results to duduce further statements

. Conclude that the conclusion, Q, is true based on the
previous logical steps
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Even and Odd Integers

s Definition: An integer nis even if there exists an integer k
such that

n=2k.

= Definition: An integer nis odd if there exists an integer k
such that

n=2k+1.
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Even and Odd Integers

s Definition: An integer nis even if there exists an integer k
such that

n=2k.

s Definition: An integer nis odd if there exists an integer k
such that

n=2k+1.

s Note:

= Every integer is either even or odd
= No integer is both even and odd
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

1. Assume P(n) is true
» Let nbe an arbitrary odd integer
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

1. Assume P(n) is true
» Let nbe an arbitrary odd integer

s Note:

= |t is important that the value of nis arbitrary to ensure that
the proof applies to all values of n (rather than a specific
value of n)
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements
= By definition of an odd integer, there exists an integer k
such that

n=2k+1
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements
» Use algebra to deduce the value of n?

n“ = (2k + 1)°
= 4k® + 4k + 1
= 2(2k* +2k) + 1 .
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements
= For clarity, we define a new integer k' = 2k? + 2k

n* = 2(2k* + 2k) + 1
=2k" +1.
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Direct Proofs

= Proposition: If nis an odd integer, then n? is odd.
= Vn(P(n) = Q(n))
= P(n) =“nis an odd integer”
= Q(n) ="“n"is odd”

s Proof Sketch:

3. Conclude that the Q(n) is true based on the previous
logical steps
= We showed that there exists an integer k/ = 2k? + 2k
such that n® = 2k’ + 1
= By definition of an odd integer, n? is odd
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.

s Proof:
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.

= Proof: Let n be an arbitrary odd integer.
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.

= Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.

= Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
Hence, we have that

n° = (2k +1)°

= 4K% + 4k + 1
= 2(2k? + 2k) + 1
= 2k’ +1, for k' = 2k® + 2k .
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Direct Proofs

= Proposition: If nis an odd integer, then n® is odd.

= Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
Hence, we have that

n° = (2k +1)°

= 4K% + 4k + 1
= 2(2k? + 2k) + 1
= 2k’ +1, for k' = 2k® + 2k .

Since k' = 2k? + 2k is an integer, by definiton of an odd
integer n° is odd. W
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Direct Proofs

s Definition: An integer a is a perfect square if there is an
integer b such that a = b°.

Kyle Berney — Ch 1.7: Introduction to Proofs



Direct Proofs

= Proposition: If m and n are both perfect squares, then nm is
also a perfect square.
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Direct Proofs

= Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

s Proof:
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Direct Proofs

= Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

s Proof: Let m and n be arbitrary integers such that m = x? and
n = y? for some integers x and y.
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Direct Proofs

= Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

s Proof: Let m and n be arbitrary integers such that m = x? and
n = y? for some integers x and y.

mn = x°y?
(xx)(yy)
(xy)(xy)

= (xy)°

= z° forz = xy .
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Direct Proofs

= Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

s Proof: Let m and n be arbitrary integers such that m = x? and
n = y? for some integers x and y.

mn = x°y?
(Xx)(yy)
(xy)(xy)
= (xy)

= 2% forz = xy .
It follows from the definition of a perfect square that mnis
also a perfect square. B
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Direct Proofs

s Conjecture:

0.9999 = 1

= [rue or False?
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof:
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Direct Proofs

= Proposition:

0.9999 = 1
s Proof: Let x = 0.9999
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof: Let x = 0.9999
< 10x = 9.9999
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof: Let x = 0.9999
< 10x = 9.9999
=9+ 0.9999
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof: Let x = 0.9999
< 10x = 9.9999
=9+ 0.9999

=9+ X
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof: Let x = 0.9999
< 10x = 9.9999
=9+ 0.9999

=9+ X
& 9x =9
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Direct Proofs

= Proposition:

0.9999 = 1

s Proof: Let x = 0.9999
< 10x = 9.9999
=9+ 0.9999

=9+ x
S 9x =9
Sx=1. B
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Proof by Contraposition

= Recall that a conditional statement P = Q) is logically
equivalent to its contrapositive -Q = —P

P =@ -Q Q= P
T [ T
F T F
T F T
T T T

= We can use this logical equivalence to construct a
proof by contraposition.
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Proof by Contraposition

= Recall that a conditional statement P = Q) is logically
equivalent to its contrapositive -Q = —P

P =@ -Q Q= P
T [ T
F T F
T F T
T T T

= We can use this logical equivalence to construct a
proof by contraposition.
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Proof by Contraposition

s To prove a conditional statement P = Q via its contrapositive
—Q = P

. Assume the negation of the conclusion, —Q), is true

. Use definitions, axioms, and other previously proven
results to duduce further statements

. Conclude that the negation of the hypothesis, =P, is true
based on the previous logical steps
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

Kyle Berney — Ch 1.7: Introduction to Proofs



Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof Sketch: (Direct proof)
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof Sketch: (Direct proof)

3n+2 =2k + 1, for some integer k
< 3n=2k — 1
2Kk — 1

< N =
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof Sketch: (Direct proof)

3n+2 =2k + 1, for some integer k
< 3n=2k — 1
2Kk — 1

< N =

s [here does not seem to be any direct way to conclude that n
IS odd.
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.
» VN(—Q(n) = —P(n))
= ~Q(n) ="“nis even”
= =P(n) =“3n+2is even”

s Proof Sketch: (Proof by contraposition)
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.
» VN(—Q(n) = —P(n))
= ~Q(n) ="“nis even”
= =P(n) =“3n+2is even”

s Proof Sketch: (Proof by contraposition)

1. Assume the negation of the conclusion, —=Q(n), is true
» Let nbe an arbitrary even integer
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.
» VN(—Q(n) = —P(n))
= ~Q(n) ="“nis even”
= =P(n) =“3n+2is even”

s Proof Sketch: (Proof by contraposition)

2. Use definitions, axioms, and other previously proven
results to duduce further statements
=« By definition of an even integer, there exists an integer
k such that
n =2k
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.
» VN(—Q(n) = —P(n))
= ~Q(n) ="“nis even”
= =P(n) =“3n+2is even”

s Proof Sketch: (Proof by contraposition)

2. Use definitions, axioms, and other previously proven
results to duduce further statements
« Use algebra to deduce the value of 3n+ 2

3n+2 =3(2K) + 2
= 6K + 2
=2(3k+ 1)
=2k’ fork’ =3k +1 .
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.
» VN(—Q(n) = —P(n))
= ~Q(n) ="“nis even”
= =P(n) =“3n+2is even”

s Proof Sketch: (Proof by contraposition)

3. Conclude that the negation of the hypothesis, =P(n), is
true based on the previous logical steps
= We showed that 3n + 2 = 2k’ for integer k" = 3k + 1
= By definition of an even integer, 3n + 2 is even
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof: We proceed by proof by contraposition.
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k.

Kyle Berney — Ch 1.7: Introduction to Proofs



Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k.

3n+2 = 3(2k) + 2
=06k +2
=2(3k+1)
=2k’ fork’ =3k +1 .
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k.

3n+2 = 3(2k) + 2
=06k +2
=2(3k+1)
=2k’ fork’ =3k +1 .

Since 3n + 2 = 2k’ for integer k' = 3k + 1, by definition of an
even integer 3n + 2 is even.
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Proof by Contraposition

= Proposition: If nis an integer and 3n + 2 is odd, then nis odd.

s Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k.

3n+2 = 3(2k) + 2
=06k +2
=2(3k+1)
=2k’ fork’ =3k +1 .

Since 3n + 2 = 2k’ for integer k' = 3k + 1, by definition of an
even integer 3n + 2 is even. We have shown that the
contrapositive Is true, therefore, if 3n + 2 is odd then nis odd
is also true. B
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Hint #1: Try a direct proof
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Hint #1: Try a direct proof
s Hint #2: Remember that multiplying inequalities by positive
numbers do not affect the direction of the inequality
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Proof:
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Proof: Let s, t, u, and v be arbitrary positive such that s < t
and u < v.
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Proof: Let s, t, u, and v be arbitrary positive real numbers
such that s < tand u < v. Since s < t and u is positive,
su < tu.
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Proof: Let s, t, u, and v be arbitrary positive real numbers
such that s < tand u < v. Since s < t and u is positive,
su < tu. Similarly since u < v and t is positive, ut < vt.
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Exercise

s Lemma: For any positive real numbers s, t, tand v, if s < t
and u < vthensu < tv .

s Proof: Let s, t, u, and v be arbitrary positive real numbers
such that s < tand u < v. Since s < t and u is positive,
su < tu. Similarly since u < v and t is positive, tu < tv.
Therefore, su < tu < tv.
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.

s Proof: We proceed with proof by contraposition.
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.

s Proof: We proceed with proof by contraposition.

1. Assume the negation of the conclusion, —=Q(n), is true
» Using De Morgan’s law,

a>+/nand b > +/n
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.

= Proof: We proceed with proof by contraposition. Let aand b
be arbitrary positive integers and n = ab. Assume that

a>+/nandb > /n.
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.

= Proof: We proceed with proof by contraposition. Let aand b
be arbitrary positive integers and n = ab. Assume that
a > y/nand b > +/n. From the previous Lemma (Slide 16),
we know that if 0 < s < tand 0 < u < vthen su < tv.
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Proof by Contraposition

= Proposition: If n = ab, where a and b are positive integers,
thena < +/norb < +/n.

= Proof: We proceed with proof by contraposition. Let aand b
be arbitrary positive integers and n = ab. Assume that
a > v/nand b > +/n. From the previous Lemma (Slide 16),
we know that if 0 < s < tand 0 < u < vthen su < tv.
Hence, ab > (v/n)(v/n)=nandab#n. &
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Vacuous Proof

= Recall that a conditional statement P = Q is always true if P
is false.

P = Q
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Vacuous Proof

= Recall that a conditional statement P = Q is always true if P
is false.

P P = Q
T

E
F

= A vacuous proof shows that P is false

» Often used to establish special cases of statements
= Base case(s) in proof by induction (Chapter 5)
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Vacuous Proof

= Proposition: If nis an integer such that n is a perfect square
and 10 < n < 15, then nis also a perfect cube.

Kyle Berney — Ch 1.7: Introduction to Proofs



Vacuous Proof

= Proposition: If nis an integer such that n is a perfect square
and 10 < n < 15, then nis also a perfect cube.

s Proof: There does not exist a value for n that is a perfect
square and between the values of 10 and 15. Therefore, the
proposition is vacuously true. I
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Trivial Proof

= Recall that a conditional statement P = Q is always true if Q
IS true.

P = Q
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Trivial Proof

= Recall that a conditional statement P = Q is always true if Q
IS true.

P P = Q
T

E
F

= A trivial proof shows that Q is true

= Often used to establish special cases of statements
= Base case(s) in proof by induction (Chapter 5)
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“Trivial” Proof

= A trivial proof may also refer to an “easy” proof
s Whether a proof or “easy” or not depends on the person
constructing the proof!

= An expert may consider a proof trivial
= A novice may consider the proof non-trivial

= Common (math) joke to say that any proof is trivial, as long

as you know how to prove it.

® |n this class, we will construct our proofs assuming everyone
IS a novice

= |n general, this is what you should assume, as you never
know who is going to be reading your proofs
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Trivial Proof

= Proposition: Let P(n) be “If a and b are positive integers with
a > b, then a" > b™, where the domain is all non-negative
integers. Show that P(0) is true.
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Trivial Proof

= Proposition: Let P(n) be “If a and b are positive integers with
a > b, then 8" > b"’, where the domain is all non-negative

integers. Show that P(0) is true.

s Proof: We evaluate P(0) which results in & = b° = 1.
Therefore, P(0) is trivially true. B
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Proof by Contradiction

= A proof by contradiction proves that a proposition P = Q is
true by:

. Assume that the negation of the proposition =(P = Q) is
frue

. Show that —(P = Q) leads to a contradiction, hence
—(P = Q) must be false

. It follows that =(P = Q) = F is true and therefore P = Q
IS also true
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Proof by Contradiction

= A proof by contradiction proves that a proposition P = Q is
true by:

. Assume that the negation of the proposition =(P = Q) is
frue

. Show that —(P = Q) leads to a contradiction, hence
—(P = Q) must be false

. It follows that =(P = Q) = F is true and therefore P = Q
IS also true

s Note:
—I(P — Q) = —I(—IP V Q)

=PA-Q.
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Proof by Contradiction

= A proof by contradiction proves that a proposition P = Q is
true by:

1. Assume that the negation of the proposition =(P = Q) is
frue

2. Show that -(P = Q) leads to a contradiction, hence
—(P = Q) must be false

3. It follows that =(P = Q) = F is true and therefore P = Q
IS also true
P P =@ (PA-Q)=F

T
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Rational and Irrational Numbers

= Definition: A real number r is rational if there exists integers p
and g with g & 0 such that

_P
q
s Definition: A real number r is irrational if it is not rational.

r
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

1. Assume the negation of the proposition (—P) is true
= Assume for the sake of contradiction that \/§ IS rational.

Kyle Berney — Ch 1.7: Introduction to Proofs



Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= By definition of a rational number, there exists integers
a and b, where b # 0 and a and b have no common
factors, such that

V2 =

Kyle Berney — Ch 1.7: Introduction to Proofs



Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= By definition of a rational number, there exists integers
a and b, where b # 0 and a and b have no common
factors, such that

V2 =
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= By definition of an even integer, it follows that a° is even.
= From Exercise 18 (in textbook), if a° is even then aiis
also even.
=« By definition of an even integer, there exists an integer
¢ such that a = 2c.
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= By definition of an even integer, it follows that a° is even.
= From Exercise 18 (in textbook), if a° is even then aiis
also even.
=« By definition of an even integer, there exists an integer
¢ such that a = 2c.
2b° = &
= (2¢)°
= 4¢°

& b2 = 267 .
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= Since b? = 2¢2, by definition b? is even.
= From Exercise 18 (in textbook), if b* is even then b is
also even.
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

2. Show that =P leads to a contradiction
= We showed that both a and b are even, hence, they
both have a common factor of 2
= However, we assumed that a and b have no common
factors, a contradiction.
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Proof by Contradiction

= Proposition: v/2 is irrational.

s Proof Sketch:

3. It follows that P is also true
= Therefore, /2 is irrational
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

s Proof:

1. Assume that the negation of the proposition
(P = Q) = (P AN —Q) is true
» 3n+2Is odd
= NIS even
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

= Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and nis even.
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

s Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k.
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

s Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k.

3n+2 = 3(2k) + 2

= 0Kk + 2
=2(3k+1)
=2k' for k' =3k + 1.
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

s Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k.

3n+2 = 3(2k) + 2

= 6K + 2
=2(3k+1)
=2k' fork’ =3k +1 .
By definition, 3n + 2 is also even, a contradiction.
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Proof by Contradiction

= Proposition: For an integer n, if 3n + 2 is odd then nis odd.

s Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k.

3n+2 = 3(2k) + 2
= 6K + 2
=2(3k+1)
=2k' fork' =3k +1 .

By definition, 3n + 2 is also even, a contradiction. Therefore,
if 3n+ 2 is odd then nis odd. B
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Proofs of Equivalance

s [0 prove a proposition that is a biconditional statement
(P < Q), prove both:

= P=Q
s Q=P
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Exercises

= Proposition: Let m, n, and p be integers. f m+ nand n+p
are even integers, then m+ p is even.
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Exercises

= Proposition: Prove that every odd integer is the difference of
ftwo squares.
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Exercises

= Proposition: Use a proof by contradiction to prove that the
sum of an irrational number and a rational number is
irrational.
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Exercises

s Proposition: If x is irrational, then % IS Irrational.
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Exercises

= Proposition: If x is an irrational number and x > 0, then /x
IS also irrational.
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Exercises

= Proposition: Let n be an integer. If n® + 5is odd, then n is
even.
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Exercises

s Proposition: Prove the proposition P(0), where P(n) is the
proposition “If nis a positive integer greater than 1, then
n‘ > n’
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Exercises

= Proposition: Let n be a positive integer. nis odd if and only if
5n + 6 is odd.
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