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Proofs

A proof is a valid argument that establishes the truth of a
mathematical statement
To construct a proof, we can use:

Hypotheses of the statement
Axioms (fundamental statements we assume to be true)
Previously proven statements
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Proof Writing Conventions

Proofs are written using first person plural

Tradition
Suggests a collaborative reasoning between the reader
and writer
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Proof Writing Conventions

Proofs are written using first person plural

Tradition
Suggests a collaborative reasoning between the reader
and writer

Common phrases:

1. Starting a train of thought
“Assume that ...”
“We begin by ...”
“Let us consider ...”
“We are given that ...”
“Suppose that ...”
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Proof Writing Conventions

Proofs are written using first person plural

Tradition
Suggests a collaborative reasoning between the reader
and writer

Common phrases:

2. Making Observations
“We observe that ...”
“Notice that ...”
“We see that ...”
“We note that ...”
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Proof Writing Conventions

Proofs are written using first person plural

Tradition
Suggests a collaborative reasoning between the reader
and writer

Common phrases:

3. Applying definitions or known results
“By definition ...”
“From Theorem ..., we know that ...”
“We use the fact that ...”
“Recall that ...”
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Proof Writing Conventions

Proofs are written using first person plural

Tradition
Suggests a collaborative reasoning between the reader
and writer

Common phrases:

4. Concluding the proof
“We have shown that ...”
“Therefore, ...”
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Proof Writing Conventions

At the end of a proof we write ■ or □ (tombstone symbols)

Tradition
Formality
Clarity

Historically, “Q.E.D.” was used

Latin phrase, “Quod Erat Demonstrandum”
Translates to “that which was to be demonstrated” or
“what was to be shown”
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use

A theorem is a statement that can be proven and often
represents a significant result
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use

A theorem is a statement that can be proven and often
represents a significant result
A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use

A theorem is a statement that can be proven and often
represents a significant result
A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
A lemma is a preliminary result that can be proven and
assists in proving a proposition or theorem
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use

A theorem is a statement that can be proven and often
represents a significant result
A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
A lemma is a preliminary result that can be proven and
assists in proving a proposition or theorem
A corollary is a result that follows directly from a theorem
or another proven statement
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Terminology

Different terms are used to describe various mathematical
statements, generally based on the importance or use

A theorem is a statement that can be proven and often
represents a significant result
A proposition is statement that can be proven and is less
significant than a theorem, but is still of interest
A lemma is a preliminary result that can be proven and
assists in proving a proposition or theorem
A corollary is a result that follows directly from a theorem
or another proven statement
A conjecture is a statement that is being proposed as a
true statement based on evidence or intuition
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Direct Proofs

A direct proof is a method of proving a mathematical
statement by following a sequence of logical steps that
follows directly from the assumptions to the statement being
proven.
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Direct Proofs

A direct proof is a method of proving a mathematical
statement by following a sequence of logical steps that
follows directly from the assumptions to the statement being
proven.

To prove a conditional statement P ⇒ Q

1. Assume the hypothesis, P, is true
2. Use definitions, axioms, and other previously proven

results to duduce further statements
3. Conclude that the conclusion, Q, is true based on the

previous logical steps
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Even and Odd Integers

Definition: An integer n is even if there exists an integer k
such that

n = 2k .

Definition: An integer n is odd if there exists an integer k
such that

n = 2k + 1 .
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Even and Odd Integers

Definition: An integer n is even if there exists an integer k
such that

n = 2k .

Definition: An integer n is odd if there exists an integer k
such that

n = 2k + 1 .

Note:

Every integer is either even or odd
No integer is both even and odd
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

1. Assume P(n) is true
Let n be an arbitrary odd integer
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

1. Assume P(n) is true
Let n be an arbitrary odd integer

Note:

It is important that the value of n is arbitrary to ensure that
the proof applies to all values of n (rather than a specific
value of n)
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements

By definition of an odd integer, there exists an integer k
such that

n = 2k + 1
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements

Use algebra to deduce the value of n2

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k ) + 1 .
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

2. Use definitions, axioms, and other previously proven
results to duduce further statements

For clarity, we define a new integer k ′ = 2k2 + 2k

n2 = 2(2k2 + 2k ) + 1

= 2k ′ + 1 .
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

∀n(P(n) ⇒ Q(n))
P(n) = “n is an odd integer”
Q(n) = “n2 is odd”

Proof Sketch:

3. Conclude that the Q(n) is true based on the previous
logical steps

We showed that there exists an integer k ′ = 2k2 + 2k
such that n2 = 2k ′ + 1
By definition of an odd integer, n2 is odd
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

Proof:
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

Proof: Let n be an arbitrary odd integer.
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
Hence, we have that

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k ) + 1

= 2k ′ + 1, for k ′ = 2k2 + 2k .
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Direct Proofs

Proposition: If n is an odd integer, then n2 is odd.

Proof: Let n be an arbitrary odd integer. By definition of an
odd integer, there exists an integer k such that n = 2k + 1.
Hence, we have that

Since k ′ = 2k2 + 2k is an integer, by definiton of an odd
integer n2 is odd. ■

n2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k ) + 1

= 2k ′ + 1, for k ′ = 2k2 + 2k .
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Direct Proofs

Definition: An integer a is a perfect square if there is an
integer b such that a = b2.
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Direct Proofs

Proposition: If m and n are both perfect squares, then nm is
also a perfect square.
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Direct Proofs

Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

Proof:
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Direct Proofs

Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

Proof: Let m and n be arbitrary integers such that m = x2 and
n = y2 for some integers x and y .
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Direct Proofs

Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

Proof: Let m and n be arbitrary integers such that m = x2 and
n = y2 for some integers x and y .

mn = x2y2

= (xx)(yy )

= (xy )(xy )

= (xy )2

= z2, for z = xy .
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Direct Proofs

Proposition: If m and n are both perfect squares, then nm is
also a perfect square.

Proof: Let m and n be arbitrary integers such that m = x2 and
n = y2 for some integers x and y .

mn = x2y2

= (xx)(yy )

= (xy )(xy )

= (xy )2

= z2, for z = xy .
It follows from the definition of a perfect square that mn is
also a perfect square. ■
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Direct Proofs

Conjecture:
0.9999 = 1

True or False?
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Direct Proofs

Proposition:
0.9999 = 1

Proof:
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999

⇔ 10x = 9.9999
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999

⇔ 10x = 9.9999

= 9 + 0.9999
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999

⇔ 10x = 9.9999

= 9 + 0.9999

= 9 + x
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999

⇔ 10x = 9.9999

= 9 + 0.9999

= 9 + x

⇔ 9x = 9
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Direct Proofs

Proposition:
0.9999 = 1

Proof: Let x = 0.9999

⇔ 10x = 9.9999

= 9 + 0.9999

= 9 + x

⇔ 9x = 9

⇔ x = 1 . ■
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Proof by Contraposition

Recall that a conditional statement P ⇒ Q is logically
equivalent to its contrapositive ¬Q ⇒ ¬P

We can use this logical equivalence to construct a
proof by contraposition.
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Proof by Contraposition

Recall that a conditional statement P ⇒ Q is logically
equivalent to its contrapositive ¬Q ⇒ ¬P

We can use this logical equivalence to construct a
proof by contraposition.
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Proof by Contraposition

To prove a conditional statement P ⇒ Q via its contrapositive
¬Q ⇒ ¬P

1. Assume the negation of the conclusion, ¬Q, is true
2. Use definitions, axioms, and other previously proven

results to duduce further statements
3. Conclude that the negation of the hypothesis, ¬P, is true

based on the previous logical steps
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.
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Proof by Contraposition

Proof Sketch: (Direct proof)

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.
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Proof by Contraposition

Proof Sketch: (Direct proof)

3n + 2 = 2k + 1, for some integer k

⇔ 3n = 2k − 1

⇔ n =
2k − 1

3
.

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.
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Proof by Contraposition

Proof Sketch: (Direct proof)

3n + 2 = 2k + 1, for some integer k

⇔ 3n = 2k − 1

⇔ n =
2k − 1

3
.

There does not seem to be any direct way to conclude that n
is odd.

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

∀n(¬Q(n) ⇒ ¬P(n))
¬Q(n) = “n is even”
¬P(n) = “3n + 2 is even”

Proof Sketch: (Proof by contraposition)
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

∀n(¬Q(n) ⇒ ¬P(n))
¬Q(n) = “n is even”
¬P(n) = “3n + 2 is even”

Proof Sketch: (Proof by contraposition)

1. Assume the negation of the conclusion, ¬Q(n), is true
Let n be an arbitrary even integer
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

∀n(¬Q(n) ⇒ ¬P(n))
¬Q(n) = “n is even”
¬P(n) = “3n + 2 is even”

Proof Sketch: (Proof by contraposition)

2. Use definitions, axioms, and other previously proven
results to duduce further statements

By definition of an even integer, there exists an integer
k such that

n = 2k
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

∀n(¬Q(n) ⇒ ¬P(n))
¬Q(n) = “n is even”
¬P(n) = “3n + 2 is even”

Proof Sketch: (Proof by contraposition)

2. Use definitions, axioms, and other previously proven
results to duduce further statements

Use algebra to deduce the value of 3n + 2

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′, for k ′ = 3k + 1 .
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

∀n(¬Q(n) ⇒ ¬P(n))
¬Q(n) = “n is even”
¬P(n) = “3n + 2 is even”

Proof Sketch: (Proof by contraposition)

3. Conclude that the negation of the hypothesis, ¬P(n), is
true based on the previous logical steps

We showed that 3n + 2 = 2k ′ for integer k ′ = 3k + 1
By definition of an even integer, 3n + 2 is even
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We proceed by proof by contraposition.



Kyle Berney – Ch 1.7: Introduction to Proofs 15 - 2

Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k .
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′, for k ′ = 3k + 1 .
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Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′, for k ′ = 3k + 1 .
Since 3n + 2 = 2k ′ for integer k ′ = 3k + 1, by definition of an
even integer 3n + 2 is even.



Kyle Berney – Ch 1.7: Introduction to Proofs 15 - 5

Proof by Contraposition

Proposition: If n is an integer and 3n + 2 is odd, then n is odd.

Proof: We proceed by proof by contraposition. Let n be an
arbitrary even integer such that n = 2k for some integer k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′, for k ′ = 3k + 1 .
Since 3n + 2 = 2k ′ for integer k ′ = 3k + 1, by definition of an
even integer 3n + 2 is even. We have shown that the
contrapositive is true, therefore, if 3n + 2 is odd then n is odd
is also true. ■
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Hint #1: Try a direct proof
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Hint #1: Try a direct proof
Hint #2: Remember that multiplying inequalities by positive
numbers do not affect the direction of the inequality
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Proof:
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Proof: Let s, t , u, and v be arbitrary positive such that s < t
and u < v .
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Proof: Let s, t , u, and v be arbitrary positive real numbers
such that s < t and u < v . Since s < t and u is positive,
su < tu.



Kyle Berney – Ch 1.7: Introduction to Proofs 16 - 7

Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Proof: Let s, t , u, and v be arbitrary positive real numbers
such that s < t and u < v . Since s < t and u is positive,
su < tu. Similarly since u < v and t is positive, ut < vt .
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Exercise

Lemma: For any positive real numbers s, t , u and v , if s < t
and u < v then su < tv .

Proof: Let s, t , u, and v be arbitrary positive real numbers
such that s < t and u < v . Since s < t and u is positive,
su < tu. Similarly since u < v and t is positive, tu < tv .
Therefore, su < tu < tv . ■
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.

Proof: We proceed with proof by contraposition.
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.

Proof: We proceed with proof by contraposition.

1. Assume the negation of the conclusion, ¬Q(n), is true
Using De Morgan’s law,

a >
√

n and b >
√

n
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.

Proof: We proceed with proof by contraposition. Let a and b
be arbitrary positive integers and n = ab. Assume that
a >

√
n and b >

√
n.
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.

Proof: We proceed with proof by contraposition. Let a and b
be arbitrary positive integers and n = ab. Assume that
a >

√
n and b >

√
n. From the previous Lemma (Slide 16),

we know that if 0 < s < t and 0 < u < v then su < tv .
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Proof by Contraposition

Proposition: If n = ab, where a and b are positive integers,
then a ≤

√
n or b ≤

√
n.

Proof: We proceed with proof by contraposition. Let a and b
be arbitrary positive integers and n = ab. Assume that
a >

√
n and b >

√
n. From the previous Lemma (Slide 16),

we know that if 0 < s < t and 0 < u < v then su < tv .
Hence, ab > (

√
n)(

√
n) = n and ab ̸= n. ■
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Vacuous Proof

Recall that a conditional statement P ⇒ Q is always true if P
is false.
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Vacuous Proof

Recall that a conditional statement P ⇒ Q is always true if P
is false.

A vacuous proof shows that P is false

Often used to establish special cases of statements
Base case(s) in proof by induction (Chapter 5)
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Vacuous Proof

Proposition: If n is an integer such that n is a perfect square
and 10 ≤ n ≤ 15, then n is also a perfect cube.
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Vacuous Proof

Proposition: If n is an integer such that n is a perfect square
and 10 ≤ n ≤ 15, then n is also a perfect cube.

Proof: There does not exist a value for n that is a perfect
square and between the values of 10 and 15. Therefore, the
proposition is vacuously true. ■
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Trivial Proof

Recall that a conditional statement P ⇒ Q is always true if Q
is true.
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Trivial Proof

Recall that a conditional statement P ⇒ Q is always true if Q
is true.

A trivial proof shows that Q is true

Often used to establish special cases of statements
Base case(s) in proof by induction (Chapter 5)
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“Trivial” Proof

A trivial proof may also refer to an “easy” proof
Whether a proof or “easy” or not depends on the person
constructing the proof!

An expert may consider a proof trivial
A novice may consider the proof non-trivial

Common (math) joke to say that any proof is trivial, as long
as you know how to prove it.

In this class, we will construct our proofs assuming everyone
is a novice

In general, this is what you should assume, as you never
know who is going to be reading your proofs
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Trivial Proof

Proposition: Let P(n) be “If a and b are positive integers with
a ≥ b, then an ≥ bn”, where the domain is all non-negative
integers. Show that P(0) is true.
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Trivial Proof

Proposition: Let P(n) be “If a and b are positive integers with
a ≥ b, then an ≥ bn”, where the domain is all non-negative
integers. Show that P(0) is true.

Proof: We evaluate P(0) which results in a0 = b0 = 1.
Therefore, P(0) is trivially true. ■
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Proof by Contradiction

A proof by contradiction proves that a proposition P ⇒ Q is
true by:

1. Assume that the negation of the proposition ¬(P ⇒ Q) is
true

2. Show that ¬(P ⇒ Q) leads to a contradiction, hence
¬(P ⇒ Q) must be false

3. It follows that ¬(P ⇒ Q) ⇒ F is true and therefore P ⇒ Q
is also true
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Proof by Contradiction

A proof by contradiction proves that a proposition P ⇒ Q is
true by:

1. Assume that the negation of the proposition ¬(P ⇒ Q) is
true

2. Show that ¬(P ⇒ Q) leads to a contradiction, hence
¬(P ⇒ Q) must be false

3. It follows that ¬(P ⇒ Q) ⇒ F is true and therefore P ⇒ Q
is also true

¬(P ⇒ Q) ≡ ¬(¬P ∨ Q)

≡ P ∧ ¬Q .

Note:
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Proof by Contradiction

A proof by contradiction proves that a proposition P ⇒ Q is
true by:

1. Assume that the negation of the proposition ¬(P ⇒ Q) is
true

2. Show that ¬(P ⇒ Q) leads to a contradiction, hence
¬(P ⇒ Q) must be false

3. It follows that ¬(P ⇒ Q) ⇒ F is true and therefore P ⇒ Q
is also true
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Rational and Irrational Numbers

Definition: A real number r is rational if there exists integers p
and q with q ̸= 0 such that

Definition: A real number r is irrational if it is not rational.

r =
p
q

.



Kyle Berney – Ch 1.7: Introduction to Proofs 25 - 1

Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

1. Assume the negation of the proposition (¬P) is true
Assume for the sake of contradiction that

√
2 is rational.
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
By definition of a rational number, there exists integers
a and b, where b ̸= 0 and a and b have no common
factors, such that

√
2 =

a
b



Kyle Berney – Ch 1.7: Introduction to Proofs 25 - 4

Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
By definition of a rational number, there exists integers
a and b, where b ̸= 0 and a and b have no common
factors, such that

√
2 =

a
b

⇒ 2 =
a2

b2

⇒ 2b2 = a2 .
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
By definition of an even integer, it follows that a2 is even.
From Exercise 18 (in textbook), if a2 is even then a is
also even.
By definition of an even integer, there exists an integer
c such that a = 2c.
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
By definition of an even integer, it follows that a2 is even.
From Exercise 18 (in textbook), if a2 is even then a is
also even.
By definition of an even integer, there exists an integer
c such that a = 2c.

2b2 = a2

= (2c)2

= 4c2

⇔ b2 = 2c2 .
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
Since b2 = 2c2, by definition b2 is even.
From Exercise 18 (in textbook), if b2 is even then b is
also even.



Kyle Berney – Ch 1.7: Introduction to Proofs 25 - 8

Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

2. Show that ¬P leads to a contradiction
We showed that both a and b are even, hence, they
both have a common factor of 2
However, we assumed that a and b have no common
factors, a contradiction.
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Proof by Contradiction

Proposition:
√

2 is irrational.

Proof Sketch:

3. It follows that P is also true
Therefore,

√
2 is irrational
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof:

1. Assume that the negation of the proposition
¬(P ⇒ Q) ≡ (P ∧ ¬Q) is true

3n + 2 is odd
n is even
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even.
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k .



Kyle Berney – Ch 1.7: Introduction to Proofs 26 - 5

Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′ for k ′ = 3k + 1 .
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′ for k ′ = 3k + 1 .
By definition, 3n + 2 is also even, a contradiction.
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Proof by Contradiction

Proposition: For an integer n, if 3n + 2 is odd then n is odd.

Proof: Let n be an arbitrary integer. Assume for the sake of
contradiction that 3n + 2 is odd and n is even. By definition of
an even integer, there exists an integer k such that n = 2k .

3n + 2 = 3(2k ) + 2

= 6k + 2

= 2(3k + 1)

= 2k ′ for k ′ = 3k + 1 .
By definition, 3n + 2 is also even, a contradiction. Therefore,
if 3n + 2 is odd then n is odd. ■
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Proofs of Equivalance

To prove a proposition that is a biconditional statement
(P ⇔ Q), prove both:

P ⇒ Q
Q ⇒ P
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Exercises

Proposition: Let m, n, and p be integers. If m + n and n + p
are even integers, then m + p is even.
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Exercises

Proposition: Prove that every odd integer is the difference of
two squares.
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Exercises

Proposition: Use a proof by contradiction to prove that the
sum of an irrational number and a rational number is
irrational.
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Exercises

Proposition: If x is irrational, then 1
x is irrational.
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Exercises

Proposition: If x is an irrational number and x > 0, then
√

x
is also irrational.
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Exercises

Proposition: Let n be an integer. If n3 + 5 is odd, then n is
even.
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Exercises

Proposition: Prove the proposition P(0), where P(n) is the
proposition “If n is a positive integer greater than 1, then
n2 > n.”
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Exercises

Proposition: Let n be a positive integer. n is odd if and only if
5n + 6 is odd.


