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Nested Quantifiers

Nested quantifiers occur when one quantifer is within scope
of another quantifier.
Allows us to express more complex statements
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Nested Quantifiers

Nested quantifiers occur when one quantifer is within scope
of another quantifier.
Allows us to express more complex statements

Ex.

Domain is all real numbers
∀x∃y (x + y = 0)
“For all x , there exists a y such that x + y = 0.”
Known as the additive inverse of x , namely −x .
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Nested Quantifiers

Nested quantifiers occur when one quantifer is within scope
of another quantifier.
Allows us to express more complex statements

Ex.

Domain is all real numbers
∀x∀y (x + y = y + x)
“For all x and y , x + y = y + x .”
Known as the commutative law for addition
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Nested Quantifiers

Nested quantifiers occur when one quantifer is within scope
of another quantifier.
Allows us to express more complex statements

Ex.

Domain is all real numbers
∀x∀y∀z(x + (y + z) = (x + y ) + z)
“For all x , y , and z, (x + (y + z) = (x + y ) + z).”
Known as the associative law for addition
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∀x∀y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∀x∀y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )

True only if P(x , y ) is true for all values of (x , y )
P(0, 0) ∧ P(0, 1) ∧ P(0, 2)

∧P(1, 0) ∧ P(1, 1) ∧ P(1, 2)

∧P(2, 0) ∧ P(2, 1) ∧ P(2, 2)
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∀x∃y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∀x∃y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )

True only if for each value of x , P(x , y ) is true for at least one
value of y

(P(0, 0) ∨ P(0, 1) ∨ P(0, 2))

∧(P(1, 0) ∨ P(1, 1) ∨ P(1, 2))

∧(P(2, 0) ∨ P(2, 1) ∨ P(2, 2))
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∃x∀y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∃x∀y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )

True only if there is a value of x such that for all values of y
P(x , y ) is true.

(P(0, 0) ∧ P(0, 1) ∧ P(0, 2))

∨(P(1, 0) ∧ P(1, 1) ∧ P(1, 2))

∨(P(2, 0) ∧ P(2, 1) ∧ P(2, 2))



Kyle Berney – Ch 1.5: Nested Quantifiers 6 - 1

Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∃x∃y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )
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Thinking of Quantification as Loops

It can be helpful to think of nested quantification as nested
loops

Ex. Consider the finite domain {0, 1, 2}.

∃x∃y (P(x , y ))

for x = 0 to 2
for y = 0 to 2

P(x , y )

True only if there exists at least one value of (x , y ) such that
P(x , y ) is true

P(0, 0) ∨ P(0, 1) ∨ P(0, 2)

∨P(1, 0) ∨ P(1, 1) ∨ P(1, 2)

∨P(2, 0) ∨ P(2, 1) ∨ P(2, 2)
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

∀x∃y (P(x , y ))

“For every x , there exists at least one y such that P(x , y )
is true.”

∃x∀y (P(x , y ))

“There exists an x , such that for every y , P(x , y ) is true.”
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∀x∀y∃z(x + y = z)?
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∀x∀y∃z(x + y = z)?

Solution:

“For all x and y , there exists at least one value of z such
that “x + y = z.”
True
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∃z∀x∀y (x + y = z)?
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∃z∀x∀y (x + y = z)?

Solution:

“There exists a value for z such that for all values of x and
y “x + y = z.”
False
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∀x∀y∃z(x + y = z)?
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∀x∀y∃z(x + y = z)?

Solution:

“For all x and y , there exists at least one value of z such
that “x + y = z.”
True
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∃z∀x∀y (x + y = z)?
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Order of Quantifiers

Order of the quantifiers is important!

Unless all quantifiers are the same

Ex.

Domain is all real numbers
What is the truth value of ∃z∀x∀y (x + y = z)?

Solution:

“There exists a value for z such that for all values of x and
y “x + y = z.”
False
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Negating Nested Quantifiers

Recall De Morgan’s laws for quantifiers

¬∀x(P(x)) ≡ ∃x(¬P(x))
¬∃x(P(x)) ≡ ∀x(¬P(x))

We can apply these laws to nested quantifiers as well
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Negating Nested Quantifiers

Recall De Morgan’s laws for quantifiers

¬∀x(P(x)) ≡ ∃x(¬P(x))
¬∃x(P(x)) ≡ ∀x(¬P(x))

We can apply these laws to nested quantifiers as well

Ex.

Express the negation of ∀x∃y (xy = 1) so that no negation
preceeds a quantifer.
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Negating Nested Quantifiers

Recall De Morgan’s laws for quantifiers

¬∀x(P(x)) ≡ ∃x(¬P(x))
¬∃x(P(x)) ≡ ∀x(¬P(x))

We can apply these laws to nested quantifiers as well

Ex.

Express the negation of ∀x∃y (xy = 1) so that no negation
preceeds a quantifer.

Solution:
¬∀x∃y (xy = 1) ≡ ∃x¬∃y (xy = 1)

≡ ∃x∀y (¬(xy = 1))

≡ ∃x∀y (xy ̸= 1) .
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(a) Everybody loves Jerry
(b) Everybody loves somebody
(c) There is somebody whom everybody loves
(d) Nobody loves everybody
(e) There is somebody whom Lydia does not love
(f) There is somebody whom no one loves
(g) There is exactly one person whom everybody loves
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(a) Everybody loves Jerry

∀x(L(x , Jerry))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(b) Everybody loves somebody

∀x∃y (L(x , y ))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(c) There is somebody whom everybody loves

∃y∀x(L(x , y ))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(d) Nobody loves everybody

¬∃x∀y (L(x , y ))

≡∀x¬∀y (L(x , y ))

≡∀x∃y (¬L(x , y ))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(e) There is somebody whom Lydia does not love

∃x(¬L(Lydia, x))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(f) There is somebody whom no one loves

∃y¬∃x(L(x , y ))

≡∃y∀x(¬L(x , y ))
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Exercises

Let L(x , y ) be the statement “x loves y ”, where the domain
consists of all people. Use quantifiers to express each of
these statements.

(g) There is exactly one person whom everybody loves

∃!y∀x(L(x , y ))

≡∃y∀x(L(x , y ) ∧ ∀z(L(x , z) ⇒ z = y ))
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Exercises
Let M(x , y ) be “x has sent y an email message” and T (x , y ) be “x has
telephoned y ” where the domain consists of all students in the class.
Use quantifiers to express each of these statements.

(a) There is a student in your class who has sent everyone else in your
class an e-mail message.

(b) There is someone in your class who has either sent an email
message or telephoned everyone else in your class.

(c) There is a student in your class who has not received an email
message from anyone else in the class and who has not been called
by any other student in the class.

(d) There are two different students in your class who between them
have sent an email message to or telephoned everyone else in the
class.
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Exercises

Let M(x , y ) be “x has sent y an email message” and T (x , y )
be “x has telephoned y ” where the domain consists of all
students in the class. Use quantifiers to express each of
these statements.
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Exercises

Let M(x , y ) be “x has sent y an email message” and T (x , y )
be “x has telephoned y ” where the domain consists of all
students in the class. Use quantifiers to express each of
these statements.

(a) There is a student in your class who has sent everyone
else in your class an email message.

∃x∀y (x ̸= y ⇒ M(x , y ))



Kyle Berney – Ch 1.5: Nested Quantifiers 11 - 4

Exercises

Let M(x , y ) be “x has sent y an email message” and T (x , y )
be “x has telephoned y ” where the domain consists of all
students in the class. Use quantifiers to express each of
these statements.

(b) There is someone in your class who has either sent an
email message or telephoned everyone else in your class.

∃x∀y (x ̸= y ⇒ (M(x , y ) ∨ T (x , y )))
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Exercises

Let M(x , y ) be “x has sent y an email message” and T (x , y )
be “x has telephoned y ” where the domain consists of all
students in the class. Use quantifiers to express each of
these statements.

(c) There is a student in your class who has not received an
email message from anyone else in the class and who
has not been called by any other student in the class.

∃x∀y (x ̸= y ⇒ (¬M(x , y ) ∧ ¬T (x , y )))
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Exercises

Let M(x , y ) be “x has sent y an email message” and T (x , y )
be “x has telephoned y ” where the domain consists of all
students in the class. Use quantifiers to express each of
these statements.

(d) There are two different students in your class who
between them have sent an email message to or
telephoned everyone else in the class.

∃x∃y (x ̸= y ∧ ∀z((z ̸= x ∧ z ̸= y ) ⇒
(M(x , z) ∨ M(y , z) ∨ T (x , z) ∨ T (y , z))))


