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Predicate Logic

Definition: A predicate is a statement that contains variables
that may be true or false depending on the values of the
variables.



Kyle Berney – Ch 1.4: Predicates and Quantifiers 2 - 2

Predicate Logic

Definition: A predicate is a statement that contains variables
that may be true or false depending on the values of the
variables.

Ex.
“x is greater than 3”
“x = y + 3”
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Predicate Logic

We can denote predicates using a propositional function

Ex.
Let P(x) denote the statement “x is greater than 3”
Q(x , y ) : “x = y + 3”

Definition: A predicate is a statement that contains variables
that may be true or false depending on the values of the
variables.

Ex.
“x is greater than 3”
“x = y + 3”
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Predicate Logic

Once a value has been assigned to the variable(s) in a
predicate, the statement becomes a proposition and has a
truth value.

Ex.
Let P(x) denote the statement “x is greater than 3”
P(4) sets the value of x = 4.

“4 is greater than 3” is true.
P(2) sets the value of x = 2.

“2 is greater than 3” is false.
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Predicate Logic

Once a value has been assigned to the variable(s) in a
predicate, the statement becomes a proposition and has a
truth value.

Ex.
Q(x , y ) : “x = y + 3”
Q(1, 2) sets the value of x = 1 and y = 2.

1 = 2 + 3 is false.
Q(3, 0) sets the value of x = 3 and y = 0.

3 = 0 + 3 is true.
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Preconditions and Postconditions

Predicates can be used to formally specify the behavior of
programs.
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Preconditions and Postconditions

Predicates can be used to formally specify the behavior of
programs.
Definition: Preconditions are the conditions that must be true
before execution.
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Preconditions and Postconditions

Predicates can be used to formally specify the behavior of
programs.
Definition: Preconditions are the conditions that must be true
before execution.
Definition: Postconditions are the conditions that must be true
after execution, provided that the preconditions were
satisfied.
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Preconditions and Postconditions

Ex. Consider the following program, designed to interchange
the values of two variables x and y:
x = y;

y = z;

z = x;

What are the preconditions and postconditions to verify
correctness of this program?
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Preconditions and Postconditions

Ex. Consider the following program, designed to interchange
the values of two variables x and y:
x = y;

y = z;

z = x;

What are the preconditions and postconditions to verify
correctness of this program?

Hint: The precondition should state something about the
validity of the variables x, y, and z.
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Preconditions and Postconditions

Ex. Consider the following program, designed to interchange
the values of two variables x and y:
x = y;

y = z;

z = x;

What are the preconditions and postconditions to verify
correctness of this program?

Precondition: “The variables x,y, z have been correctly
initialized such that, x and y are intialized to values a and b,
respectively. ”
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Preconditions and Postconditions

Ex. Consider the following program, designed to interchange
the values of two variables x and y:
x = y;

y = z;

z = x;

What are the preconditions and postconditions to verify
correctness of this program?

Hint #1: What values do we expect a correct execution to
assign to the variables?
Hint #2: Which variables do we care about?
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Preconditions and Postconditions

Ex. Consider the following program, designed to interchange
the values of two variables x and y:
x = y;

y = z;

z = x;

What are the preconditions and postconditions to verify
correctness of this program?

Postcondition: “The variables x and y are set to values b and
a, respectively.”
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Quantifiers

Quantifiers express the extent to which a predicate applies to
a range of elements.

Allows us to make statements about more than one object
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Quantifiers

Quantifiers express the extent to which a predicate applies to
a range of elements.

Allows us to make statements about more than one object

Ex.

“All students completed the homework.”
“Some students have perfect attendance.”
“No one has an umbrella.”
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Universal Quantifier

Definition: The universal quantifier of a propositional function
P(x), denoted ∀x(P(x)), is the statement:

“P(x) for all values of x in the domain.”

The domain specifies the possible values of the variable.

Read as “for all x , P(x)” or “for every x , P(x)”.
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Universal Quantifier

Definition: The universal quantifier of a propositional function
P(x), denoted ∀x(P(x)), is the statement:

“P(x) for all values of x in the domain.”

The domain specifies the possible values of the variable.

Read as “for all x , P(x)” or “for every x , P(x)”.

A statement ∀x(P(x)) is false if and only if there is an
element x in the domain for which P(x) is false.

Known as a counterexample to ∀x(P(x))
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Universal Quantifier

Definition: The universal quantifier of a propositional function
P(x), denoted ∀x(P(x)), is the statement:

“P(x) for all values of x in the domain.”

The domain specifies the possible values of the variable.

Read as “for all x , P(x)” or “for every x , P(x)”.

A statement ∀x(P(x)) is false if and only if there is an
element x in the domain for which P(x) is false.

Known as a counterexample to ∀x(P(x))

Note: Only a single counterexample is needed to show that
∀x(P(x)) is false!
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Universal Quantifier

Ex.

Let P(x) be the statement “x < 2”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?
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Universal Quantifier

Ex.

Let P(x) be the statement “x < 2”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

Solution:

P(3) produces the statement 3 < 2, which is false.
Since we produced a counterexample,

∀x(P(x)) is false.
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

1. Simplify the inequality:

x2 ≥ x
⇒ x2 − x ≥ 0
⇒ x(x − 1) ≥ 0
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

2. Solve for x at critical points:

x(x − 1) = 0
⇒ x = 0 and x = 1
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

3. Test values in intervals:

(a) (−∞, 0)

(−1)(−1 − 1) = (−1)(−2)

= 2

≥ 0 . True.

Let x = −1
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

3. Test values in intervals:

(b) (1,∞)

(2)(2 − 1) = (2)(1)

= 2

≥ 0 . True.

Let x = 2
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

3. Test values in intervals:

(c) (0, 1)

(0.5)(0.5 − 1) = (0.5)(−0.5)

= −0.25

≥ 0 . False.

Let x = 0.5
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

Solution:

P(0.5) produces the statement “0.25 ≥ 0.5” which is
false.
Since we produced a counterexample,

∀x(P(x)) is false.
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

What if the domain consisted of only integers?
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Universal Quantifier

Ex.

Let P(x) be the statement “x2 ≥ x”
Domain consists of all real numbers
What is the truth value of ∀x(P(x))?

What if the domain consisted of only integers?

∀x(P(x)) is true, since there are no integer values in the
interval (0, 1)
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Existential Quantifier

Definition: The existential quantifier of a propositional
function P(x), denoted ∃x(P(x)), is the statement:

“There exists an element x in the domain such that P(x).”

Also read as “for some x , P(x)” or “there is at least one x
such that P(x)”.
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Existential Quantifier

Definition: The existential quantifier of a propositional
function P(x), denoted ∃x(P(x)), is the statement:

“There exists an element x in the domain such that P(x).”

Also read as “for some x , P(x)” or “there is at least one x
such that P(x)”.

A statement ∃x(P(x)) is true if and only if there is at least
one element x in the domain for which P(x) is true.
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Existential Quantifier

Ex.

Let P(x) be the statement “x > 3”
Domain consists of all real numbers
What is the truth value of ∃x(P(x))?
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Existential Quantifier

Ex.

Let P(x) be the statement “x > 3”
Domain consists of all real numbers
What is the truth value of ∃x(P(x))?

Solution:

P(4) produces the statement 4 > 2, which is true.
Since we produced a valid example,

∃x(P(x)) is true.
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Empty Domain

We generally assume that the domain is non-empty
If the domain is empty:

Universal quantifier (∀)
∀x(P(x)) is true, since there no elements x in the
domain for which P(x) is false.

Existential quantifier (∃)
∃x(P(x)) is false, since there no elements x in the
domain for which P(x) is true.
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Uniqueness Quantifier

Definition: The uniqueness quantifier of a propositional
function P(x), denoted ∃!x(P(x)), is the statement:

“There exists a unique element x in the domain such that P(x).”

Also read as “there is exactly one x such that P(x)
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Uniqueness Quantifier

Definition: The uniqueness quantifier of a propositional
function P(x), denoted ∃!x(P(x)), is the statement:

A statement ∃!x(P(x)) is true if and only if there is exactly
one element x in the domain for which P(x) is true.
To show that ∃!x(P(x)) is false:

There does not exist any element x such that P(x) is true
There exists more than one element x such that P(x) is
true

“There exists a unique element x in the domain such that P(x).”

Also read as “there is exactly one x such that P(x)



Kyle Berney – Ch 1.4: Predicates and Quantifiers 14 - 1

Uniqueness Quantifier

Ex.

Let P(x) be the statement “x − 1 = 0”
Domain consists of all real numbers
What is the truth value of ∃!x(P(x))?
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Uniqueness Quantifier

Ex.

Let P(x) be the statement “x − 1 = 0”
Domain consists of all real numbers
What is the truth value of ∃!x(P(x))?

Solution:

x = 1 is the only real number such that x − 1 = 0

∃!x(P(x)) is true.
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Uniqueness Quantifier

Ex.

Let P(x) be the statement “x2 = 4”
Domain consists of all real numbers
What is the truth value of ∃!x(P(x))?
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Uniqueness Quantifier

Ex.

Let P(x) be the statement “x2 = 4”
Domain consists of all real numbers
What is the truth value of ∃!x(P(x))?

Solution:

P(2) produces the statement 4 = 4, which is true.
P(−2) produces the statement 4 = 4, which is true.
Since we produced two valid values of x for which P(x) is
true,

∃!x(P(x)) is false.
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Quantifiers and Finite Domains

For finite domains (i.e., all elements can be listed), quantified
statements can be expressed using propositional logic.
Let the elements of the domain be:

x1, x2, x3, . . . , xn
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Quantifiers and Finite Domains

For finite domains (i.e., all elements can be listed), quantified
statements can be expressed using propositional logic.
Let the elements of the domain be:

x1, x2, x3, . . . , xn

Universal quantification, ∀x(P(x)), is equivalent to

P(x1) ∧ P(x2) ∧ P(x3) ∧ . . .P(xn)
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Quantifiers and Finite Domains

For finite domains (i.e., all elements can be listed), quantified
statements can be expressed using propositional logic.
Let the elements of the domain be:

x1, x2, x3, . . . , xn

Universal quantification, ∀x(P(x)), is equivalent to

P(x1) ∧ P(x2) ∧ P(x3) ∧ . . .P(xn)

Existential quantification, ∃x(P(x)), is equivalent to
P(x1) ∨ P(x2) ∨ P(x3) ∨ . . .P(xn)
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Quantifiers with Restricted Domains

We can limit the domain by providing additional conditions
that the elements of a domain must satisfy.
Ex. Domain is all real numbers

Restrict domain to “all real numbers less than 0.”
∀x < 0(x2 ≥ 0)

Restrict domain to “all real numbers not equal to 0.”
∀y ̸= 0(y3 ̸= 0)

Restrict domain to “all real numbers greater than 0.”
∃z > 0(z2 = 0)
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Precedence of Quantifiers

Quantifiers (∀, ∃, ∃!) have higher precedence than all logical
operators in propositional logic.
Ex.

Consider the statement:

∀xP(x) ∨ Q(x)

Is equivalent to:

(∀xP(x)) ∨ Q(x)

Is NOT equivalent to:

∀x(P(x) ∨ Q(x))
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Binding Variables

When a quantifier is used on a variable x , we say that this
occurence of the variable is bound.
An occurence of a variable that is not bound by a quantifier
or set equal to a particular value is said to be free.
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Binding Variables

When a quantifier is used on a variable x , we say that this
occurence of the variable is bound.
An occurence of a variable that is not bound by a quantifier
or set equal to a particular value is said to be free.

All variables that occur in a propositional function must be
bound or set equal to a particular value to turn it into a
proposition.
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Binding Variables

When a quantifier is used on a variable x , we say that this
occurence of the variable is bound.
An occurence of a variable that is not bound by a quantifier
or set equal to a particular value is said to be free.

All variables that occur in a propositional function must be
bound or set equal to a particular value to turn it into a
proposition.

The part of a logical expression to which a quantifier is
applied is called the scope of the quantifier.
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Logical Equivalences Involving Quantifiers

Definition: Statements involving predicates and quantifiers
are logically equivalent if and only if they have the same truth
value no matter:

1. Which predicates are substitued into these statements
and which domain

2. Which domain is used for the variables in these
propositional functions

Denote logical equivalence of two statements involving
predicates and quantifiers, S and T , as S ≡ T .
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Negating Quantified Expressions

Consider the proposition “Every student in this class has
taken a course in calculus.”
Domain is all students in this class.
P(x) : “Student x has taken a course in calculus”.
We can express the proposition as:

∀x(P(x))



Kyle Berney – Ch 1.4: Predicates and Quantifiers 21 - 2

Negating Quantified Expressions

Consider the proposition “Every student in this class has
taken a course in calculus.”
Domain is all students in this class.
P(x) : “Student x has taken a course in calculus”.
We can express the proposition as:

∀x(P(x))

The negation of the proposition, denoted ¬∀x(P(x)), is the
statement

“It is not the case that every student in this class has taken
a course in calculus.”
“There is a student in this class who has not taken a
course in calculus.”

∃x(¬P(x))
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Negating Quantified Expressions

Consider the proposition “There is a student in this class who
has taken a course in calculus.”
Domain is all students in this class.
P(x) : “Student x has taken a course in calculus”.
We can express the proposition as:

∃x(P(x))
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Negating Quantified Expressions

Consider the proposition “There is a student in this class who
has taken a course in calculus.”
Domain is all students in this class.
P(x) : “Student x has taken a course in calculus”.
We can express the proposition as:

∃x(P(x))

The negation of the proposition, denoted ¬∃x(P(x)), is the
statement

“It is not the case that there is a student in this class who
has taken a course in calculus.”
“Every student in this class has not taken calculus.”

∀x(¬P(x))
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De Morgan’s Laws for Quantifiers

1. ¬∀x(P(x)) ≡ ∃x(¬P(x))
2. ¬∃x(P(x)) ≡ ∀x(¬P(x))



Kyle Berney – Ch 1.4: Predicates and Quantifiers 23 - 2

De Morgan’s Laws for Quantifiers

1. ¬∀x(P(x)) ≡ ∃x(¬P(x))
2. ¬∃x(P(x)) ≡ ∀x(¬P(x))

Proposition 1. is true if

There exists an x in the domain for which P(x) is false.

Proposition 1. is false if

For every x in the domain, P(x) is true.
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De Morgan’s Laws for Quantifiers

1. ¬∀x(P(x)) ≡ ∃x(¬P(x))
2. ¬∃x(P(x)) ≡ ∀x(¬P(x))

Proposition 2. is true if

For every x in the domain, P(x) is false.

Proposition 2. is false if

There exists an x in the domain for which P(x) is true.



Kyle Berney – Ch 1.4: Predicates and Quantifiers 24 - 1

De Morgan’s Laws for Quantifiers

Ex.

What is the negation of the statement

∀x(x2 > x)
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De Morgan’s Laws for Quantifiers

Ex.

What is the negation of the statement

∀x(x2 > x)

Solution:

¬∀x(x2 < x) ≡ ∃x(¬(x2 > x))

≡ ∃x(x2 ≤ x) .
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De Morgan’s Laws for Quantifiers

Ex.

What is the negation of the statement

∃x(x2 = 2)
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De Morgan’s Laws for Quantifiers

Ex.

What is the negation of the statement

∃x(x2 = 2)

Solution:

¬∃x(x2 = 2) ≡ ∀x(¬(x2 = 2))

≡ ∀x(x2 ̸= 2) .
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De Morgan’s Laws for Quantifiers

Ex.

Show that
¬∀x(P(x) ⇒ Q(x)) ≡ ∃x(P(x) ∧ ¬Q(x))
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De Morgan’s Laws for Quantifiers

Ex.

Show that
¬∀x(P(x) ⇒ Q(x)) ≡ ∃x(P(x) ∧ ¬Q(x))

Solution:

¬∀x(P(x) ⇒ Q(x)) ≡ ∃x(¬(P(x) ⇒ Q(x)))

Using De Morgan’s Law for Quantifiers:

¬∀x(P′(x)) ≡ ∃x(¬P′(x))

Where P′(x) = P(x) ⇒ Q(x)
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De Morgan’s Laws for Quantifiers

Ex.

Show that
¬∀x(P(x) ⇒ Q(x)) ≡ ∃x(P(x) ∧ ¬Q(x))

Solution:

¬∀x(P(x) ⇒ Q(x)) ≡ ∃x(¬(P(x) ⇒ Q(x)))

≡ ∃x(P(x) ∧ ¬Q(x)) .

Using logical equivalences for conditional statements:

¬(P(x) ⇒ Q(x)) ≡ P(x) ∧ ¬Q(x)
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Exercises

Translate each of these statements into logical expressions
using predicates, quantifiers, and logical conncetives.

(a) No one is perfect
(b) Not everyone is perfect
(c) All your friends are perfect
(d) At least one of your friends is perfect
(e) Everyone is your friend and is perfect
(f) Not everybody is your friend or someone is not perfect
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Exercises

Translate each of these statements into logical expressions
using predicates, quantifiers, and logical conncetives.

(a) No one is perfect
(b) Not everyone is perfect
(c) All your friends are perfect
(d) At least one of your friends is perfect
(e) Everyone is your friend and is perfect
(f) Not everybody is your friend or someone is not perfect

Hint: Define predicates for “ is perfect” and “ is your friend”
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(a) No one is perfect

∀x¬P(x)
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(b) Not everyone is perfect

¬∀xP(x) ≡ ∃x¬P(x)
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(c) All your friends are perfect

∀x(F (x) ⇒ P(x))
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(d) At least one of your friends is perfect

∃x(F (x) ∧ P(x))
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(e) Everyone is your friend and is perfect

∀x(F (x) ∧ P(x))
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Exercises

Let P(x) be “x is perfect”
Let F (x) be “x is your friend”

(f) Not everybody is your friend or someone is not perfect

(¬∀xF (x)) ∨ (∃x¬P(x))

≡(∃x¬F (x)) ∨ (∃x¬P(x))
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(a) ∀x(x > 1)
(b) ∀x(x ≤ 2)
(c) ∃x(x ≥ 4)
(d) ∃x(x < 0)
(e) ∀x((x < −1) ∨ (x > 2))
(f) ∃x((x < 4) ∨ (x > 7))
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(a)

¬∀x(x > 1) ≡ ∃x(x ≤ 1)
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(b)

¬∀x(x ≤ 2) ≡ ∃x(x > 2)
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(c)

¬∃x(x ≥ 4) ≡ ∀x(x < 4)
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(d)

¬∃x(x < 0) ≡ ∀x(x ≥ 0)
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(e)

¬∀x((x < −1) ∨ (x > 2))

≡∃x¬((x < −1) ∨ (x > 2))

≡∃x((x ≥ −1) ∧ (x ≤ 2))
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Exercises

Express the negation of each of these statements in terms of
quantifiers without using the negation symbol

(f)

¬∃x((x < 4) ∨ (x > 7))

≡∀x¬((x < 4) ∨ (x > 7))

≡∀x((x ≥ 4) ∧ (x ≤ 7))
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.

(a) At least one mail message, among the nonempty set of
messages, can be saved if there is a disk with more than
10 kilobytes of free space.

(b) Whenever there is an active alert, all queued messages
are transmitted.

(c) The diagnostic monitor tracks the status of all systems
except the main console.

(d) Each participant on the conference call whom the host of
the call did not put on a special list was billed.
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.

(a) At least one mail message, among the nonempty set of
messages, can be saved if there is a disk with more than
10 kilobytes of free space.

Let F (x , y ) be “Disk x has more than y kilobytes”
Let S(x) be “Mail message x can be saved”

(∃xF (x , 10)) ⇒ (∃xS(x))
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.

(b) Whenever there is an active alert, all queued messages
are transmitted.

Let A(x) be “Alert x is active”
Let Q(x) be “Message x is queued”
Let T (x) be “Message x is transmitted”

(∃xA(x)) ⇒ (∀x(Q(x) ⇒ T (x))
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.

(c) The diagnostic monitor tracks the status of all systems
except the main console.

Let T (x) be “The diagnostic monitor tracks the status of
system x”

∀x((x ̸= main console) ⇒ T (x))
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Exercises

Express each of these system specifications using
predicates, quantifiers, and logical connectives.

(d) Each participant on the conference call whom the host of
the call did not put on a special list was billed.

Let L(x) be “The host of the conference call put
participant x on a special list”
Let B(x) be “Participant x was billed”

∀x(¬L(x) ⇒ B(x))


