

Ch 1.3: Propositional Equivalences

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

Terminology

- Definition: A proposition that is always true is called a tautology.
- Definition: A proposition that is always false is called a contradiction.
- <u>Definition</u>: A proposition that is neither a tautology nor contradiction is called a contingency.

P	$\neg P$	$P \vee \neg P$	$P \land \neg P$
\overline{T}	F	T	F
F	Γ	${ m T}$	F

Terminology

- Definition: A proposition that is always true is called a tautology.
- Definition: A proposition that is always false is called a contradiction.
- <u>Definition</u>: A proposition that is neither a tautology nor contradiction is called a contingency.

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
\overline{T}	F	Γ	F
F	T	Γ	\mathbf{F}
,	'	· • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •
		Tautology	Contradiction

Logical Equivalences

• (Recall) <u>Definition</u>: Two propositions P and Q are <u>logically equivalent</u>, denoted $P \equiv Q$, if the truth values for P and Q are always the same.

Logical Equivalences

- (Recall) <u>Definition:</u> Two propositions P and Q are <u>logically equivalent</u>, denoted $P \equiv Q$, if the truth values for P and Q are always the same.
- Alternate Definition: Two propositions P and Q are logically equivalent, denoted $P \equiv Q$, if $P \Leftrightarrow Q$ is a tautology.

Logical Equivalences

- (Recall) <u>Definition:</u> Two propositions P and Q are <u>logically equivalent</u>, denoted $P \equiv Q$, if the truth values for P and Q are always the same.
- Alternate Definition: Two propositions P and Q are logically equivalent, denoted $P \equiv Q$, if $P \Leftrightarrow Q$ is a tautology.
- Truth tables are typically used to determine whether two propositions are logically equivalent.

- Let P and Q be propositions.
- De Morgan laws:
 - $\neg (P \land Q) \equiv \neg P \lor \neg Q$
 - $\neg (P \lor Q) \equiv \neg P \land \neg Q$

- Let P and Q be propositions.
- De Morgan laws:
 - $\neg (P \land Q) \equiv \neg P \lor \neg Q$
 - $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- Intuitively:
 - 1. Distribute the negation (\neg)
 - 2. Flip the AND (\land) and OR (\lor)

- Let P and Q be propositions.
- De Morgan laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
$\overline{\mathbf{T}}$	Т	Τ	F	F	F	F
T	F	F	T	F	${ m T}$	${ m T}$
F	Γ	F	T	Γ	\mathbf{F}	${ m T}$
F	F	$\mid $ $\mid $	Γ	$\mid T \mid$	\mathbf{T}	${ m T}$

- Let P and Q be propositions.
- De Morgan laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
\overline{T}	T	T	F	F	F	F
T	F	\mathbf{F}	T	\mathbf{F}	${ m T}$	${ m T}$
F	$\mid T \mid$	\mathbf{F}	${ m T}$	T	F	${ m T}$
F	F	\mathbf{F}	${ m T}$	T	T	${ m T}$
	Logically Equivalent					

- Let P and Q be propositions.
- De Morgan laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

P	Q	$P \vee Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
\overline{T}	Т	${ m T}$	F	F	F	\mathbf{F}
T	F	${ m T}$	\mathbf{F}	F	T	${ m F}$
F	$\mid T \mid$	${ m T}$	\mathbf{F}	Γ	\mathbf{F}	${ m F}$
F	F	\mathbf{F}	Γ	Γ	${ m T}$	${ m T}$

- Let P and Q be propositions.
- De Morgan laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

P	Q	$P \vee Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$	
\overline{T}	Т	T	F	F	F	F	
T	F	Γ	F	F	Γ	${ m F}$	
F	Γ	Γ	F	${ m T}$	F	${ m F}$	
F	F	\mathbf{F}	Γ	${ m T}$	Γ	${ m T}$	
	Logically Equivalent						

- Let P and Q be propositions.
- Conditional Disjunction Equivalence
 - $P \Rightarrow Q \equiv \neg P \lor Q$

- Let P and Q be propositions.
- Conditional Disjunction Equivalence
 - $P \Rightarrow Q \equiv \neg P \lor Q$
- Allows the replacement of conditional statements with negations and disjunctions.

- Let P and Q be propositions.
- Conditional Disjunction Equivalence

•
$$P \Rightarrow Q \equiv \neg P \lor Q$$

 Allows the replacement of conditional statements with negations and disjunctions.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \lor Q$
T	Γ	Τ	F	Τ
T	F	${ m F}$	F	${ m F}$
F	$\mid T \mid$	${ m T}$	Γ	${ m T}$
F	$\mid F \mid$	Τ	Γ	T

- Let P and Q be propositions.
- Conditional Disjunction Equivalence

•
$$P \Rightarrow Q \equiv \neg P \lor Q$$

 Allows the replacement of conditional statements with negations and disjunctions.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \lor Q$		
\overline{T}	Т	Τ	F	Τ		
T	F	F	F	F		
F	$\mid T \mid$	${ m T}$	Γ	${ m T}$		
F	\mathbf{F}	${ m T}$	Γ	${ m T}$		
Logically Equivalent						

- Let P, Q, and R are propositions.
- Distributive law of disjunction over conjunction
 - $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

- Let P, Q, and R are propositions.
- Distributive law of disjunction over conjunction

•
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

- Note: A truth table with n propositional variables require 2ⁿ rows.
 - n = 3 propositional variables
 - $2^n = 2^3 = 8$ rows

- Let P, Q, and R are propositions.
- Distributive law of disjunction over conjunction

•
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

P	Q	R	$Q \wedge R$	$P \vee (Q \wedge R)$	$P \vee Q$	$P \vee R$	$(P \vee Q) \wedge (P \vee R)$
T	T	$\mid T \mid$	${ m T}$	T	${ m T}$	${ m T}$	${ m T}$
T	$\mid T \mid$	$\mid F \mid$	${ m F}$	m T	${ m T}$	${ m T}$	${ m T}$
T	F	$\mid T \mid$	${ m F}$	m T	${ m T}$	${ m T}$	${ m T}$
T	F	$\mid F \mid$	\mathbf{F}	T	${ m T}$	${ m T}$	T
F	$\mid T \mid$	$\mid T \mid$	${ m T}$	m T	${ m T}$	${ m T}$	${ m T}$
F	T	$\mid F \mid$	F	F	T	F	F
F	F	$\mid T \mid$	${ m F}$	\mathbf{F}	F	Γ	F
F	F	\mid F \mid	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m F}$

- Let P, Q, and R are propositions.
- Distributive law of disjunction over conjunction

•
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

P	Q	R	$Q \wedge R$	$P \vee (Q \wedge R)$	$P \vee Q$	$P \vee R$	$(P \vee Q) \wedge (P \vee R)$
T	T	$\mid T \mid$	${ m T}$	T	T	Γ	${ m T}$
T	$\mid T \mid$	$\mid F \mid$	${ m F}$	m T	Γ	Γ	${ m T}$
T	F	$\mid T \mid$	${ m F}$	m T	Γ	Γ	${ m T}$
Τ	F	$\mid F \mid$	\mathbf{F}	m T	Γ	Γ	${ m T}$
F	T	$\mid T \mid$	${ m T}$	m T	Γ	Γ	${ m T}$
F	T	$\mid F \mid$	\mathbf{F}	F	Γ	F	${ m F}$
F	F	$\mid T \mid$	${ m F}$	\mathbf{F}	\mathbf{F}	$\mid T \mid$	\mathbf{F}
F	F	F	${ m F}$	brack	\mid F	brack	${ m F}$

Logically Equivalent

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Identity laws:
 - $P \wedge T \equiv P$
 - P ∨ F ≡ P
 - Intuition: The added true or false proposition does not change the truth value of P.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Domination laws:
 - P ∨ T ≡ T
 - $P \wedge F \equiv F$
 - Intuition: The added true or false proposition dominates the truth value of P.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Idempotent laws:
 - P ∨ P ≡ P
 - $P \wedge P \equiv P$
 - Intuition: Repeating the same logical statement is redundant
 - Let P = "I am wearing shoes".
 - "I am wearing shoes or I am wearing shoes."
 - "I am wearing shoes and I am wearing shoes."
 - Both statements are equivalent to "I am wearing shoes".

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Double Negation law:
 - $\neg (\neg P) \equiv P$
 - Intuition: Negating a statement twice cancels the effect of negation.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Commutative laws:
 - $P \lor Q \equiv Q \lor P$
 - $P \wedge Q \equiv Q \wedge P$
 - Intuition: The order of propositions in an AND (∧) or OR
 (∨) does not affect the outcome.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Associative laws:
 - $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$
 - $(P \wedge Q) \wedge R \equiv P \wedge (Q \wedge R)$
 - Intuition: The way propositions are grouped in logical AND
 (△) or OR (∀) does not affect the outcome.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Distributive laws:
 - $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
 - $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Absorption laws:
 - $P \lor (P \land Q) \equiv P$
 - $P \wedge (P \vee Q) \equiv P$
 - Intuition: Shows how redundancy is logical statements can be eliminated.
 - If P is true, the entire expression is true regardless of Q.
 - If P is false, the expression reduces to $P \wedge Q$, which is also false, since P is false.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Absorption laws:
 - $P \lor (P \land Q) \equiv P$
 - $P \wedge (P \vee Q) \equiv P$
 - Intuition: Shows how redundancy is logical statements can be eliminated.
 - If *P* is false, the expression is false regardless of *Q*.
 - If P is true, the entire expression is reduced to P ∨ Q, which is also true, since P is true.

- Let P, Q and R be propositions.
- Let T and F be any proposition that is always true or false, respectively.
- Negation laws:
 - $P \vee \neg P \equiv \mathsf{T}$
 - Known as the law of contradiction
 - P cannot be both true and false simultaneously.
 - $P \land \neg P \equiv F$
 - Known as the <u>law of excluded middle</u>
 - P must be either true or false (i.e., there is no middle ground).

More Logical Equivalences – Conditional Statements

Let P, Q and R be propositions.

•
$$P \Rightarrow Q \equiv \neg P \lor Q$$

•
$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$

•
$$P \lor Q \equiv \neg P \Rightarrow Q$$

$$P \land Q \equiv \neg (P \Rightarrow \neg Q)$$

$$\neg (P \Rightarrow Q) \equiv P \land \neg Q$$

•
$$(P \Rightarrow Q) \land (P \Rightarrow R) \equiv P \Rightarrow (Q \land R)$$

•
$$(P \Rightarrow R) \land (Q \Rightarrow R) \equiv (P \lor Q) \Rightarrow R$$

•
$$(P \Rightarrow Q) \lor (P \Rightarrow R) \equiv P \Rightarrow (Q \lor R)$$

•
$$(P \Rightarrow R) \lor (Q \Rightarrow R) \equiv (P \land Q) \Rightarrow R$$

Table 7 in the textbook.

More Logical Equivalences – Biconditional Statements

- Let P and Q be propositions.
- $P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$
- $P \Leftrightarrow Q \equiv \neg P \Leftrightarrow \neg Q$
- $P \Leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$
- $\neg (P \Leftrightarrow Q) \equiv P \Leftrightarrow \neg Q$
- Table 8 in the textbook.

- Let P and Q be propositions.
- Show that $\neg(P \Rightarrow Q)$ and $P \land \neg Q$ are logically equivalent.

- Let P and Q be propositions.
- Show that $\neg(P \Rightarrow Q)$ and $P \land \neg Q$ are logically equivalent.

$$\neg(P \Rightarrow Q) \equiv \neg(\neg P \lor Q)$$

Using the logical equivalence:

$$P \Rightarrow Q \equiv \neg P \lor Q$$

- Let P and Q be propositions.
- Show that $\neg(P \Rightarrow Q)$ and $P \land \neg Q$ are logically equivalent.

$$\neg(P \Rightarrow Q) \equiv \neg(\neg P \lor Q)$$

$$\equiv \neg(\neg P) \land \neg Q$$

Using De Morgan's law:

$$\neg (P' \lor Q) \equiv \neg P' \land \neg Q$$

• Where $P' = \neg P$

- Let P and Q be propositions.
- Show that $\neg(P \Rightarrow Q)$ and $P \land \neg Q$ are logically equivalent.

$$\neg(P \Rightarrow Q) \equiv \neg(\neg P \lor Q)$$

$$\equiv \neg(\neg P) \land \neg Q$$

$$\equiv P \land \neg Q.$$

Using the double negation law:

$$\neg(\neg P) \equiv P$$

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg (\neg P \land Q)$$

Using De Morgan's law:

$$\neg (P \lor Q') \equiv \neg P \land \neg Q'$$

• Where $Q' = \neg P \wedge Q$

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$\neg(P \lor (\neg P \land Q)) \equiv \neg P \land \neg(\neg P \land Q)$$

$$\equiv \neg P \land (\neg(\neg P) \lor \neg Q)$$

Using De Morgan's law:

$$\neg (P' \land Q) \equiv \neg P' \lor \neg Q$$

• Where $P' = \neg P$

- Let P and Q be propositions.
- Show that $\neg(P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$abla (P \lor (\neg P \land Q)) \equiv \neg P \land \neg (\neg P \land Q)$$

$$\equiv \neg P \land (\neg (\neg P) \lor \neg Q)$$

$$\equiv \neg P \land (P \lor \neg Q)$$

Using the double negation law:

$$\neg(\neg P) \equiv P$$

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$abla (P \lor (\neg P \land Q)) \equiv \neg P \land \neg (\neg P \land Q)$$

$$\equiv \neg P \land (\neg (\neg P) \lor \neg Q)$$

$$\equiv \neg P \land (P \lor \neg Q)$$

$$\equiv (\neg P \land P) \lor (\neg P \land \neg Q)$$

Using the distributive law:

$$P' \wedge (P \vee Q') \equiv (P' \wedge P) \vee (P' \wedge Q')$$

• Where $P' = \neg P$ and $Q' = \neg Q$

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$abla (P \lor (\neg P \land Q)) \equiv \neg P \land \neg (\neg P \land Q)$$

$$\equiv \neg P \land (\neg (\neg P) \lor \neg Q)$$

$$\equiv \neg P \land (P \lor \neg Q)$$

$$\equiv (\neg P \land P) \lor (\neg P \land \neg Q)$$

$$\equiv F \lor (\neg P \land \neg Q)$$

Using negation law:

$$P \wedge \neg P \equiv \mathsf{F}$$

- Let P and Q be propositions.
- Show that $\neg (P \lor (\neg P \land Q))$ and $\neg P \land \neg Q$ are logically equivalent.

$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg (\neg P \land Q)$$

$$\equiv \neg P \land (\neg (\neg P) \lor \neg Q)$$

$$\equiv \neg P \land (P \lor \neg Q)$$

$$\equiv (\neg P \land P) \lor (\neg P \land \neg Q)$$

$$\equiv F \lor (\neg P \land \neg Q)$$

$$\equiv \neg P \land \neg Q.$$

Using identity law:

$$P' \vee F \equiv P'$$

• Where $P' = \neg P \land \neg Q$

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

$$(P \land Q) \Rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q)$$

Using the conditional disjunction equivalence:

$$P' \Rightarrow Q' \equiv \neg P' \lor Q'$$

• Where $P' = P \wedge Q$ and $Q' = P \vee Q$

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

$$(P \land Q) \Rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q)$$

 $\equiv (\neg P \lor \neg Q) \lor (P \lor Q)$

Using De Morgan's law:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

$$(P \land Q) \Rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q)$$

 $\equiv (\neg P \lor \neg Q) \lor (P \lor Q)$
 $\equiv (\neg P \lor P) \lor (\neg Q \lor Q)$

 Reorder and regroup using the associative and commutative laws for disjunction

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

$$(P \land Q) \Rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q)$$

 $\equiv (\neg P \lor \neg Q) \lor (P \lor Q)$
 $\equiv (\neg P \lor P) \lor (\neg Q \lor Q)$
 $\equiv \mathsf{T} \lor \mathsf{T}$

Using truth table from slide 2:

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
$\overline{\mathrm{T}}$	F	$\overline{\mathrm{T}}$	F
F	T	Τ	F

- Let P and Q be propositions.
- Show that $(P \land Q) \Rightarrow (P \lor Q)$ is a tautology.

$$(P \land Q) \Rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q)$$
 $\equiv (\neg P \lor \neg Q) \lor (P \lor Q)$
 $\equiv (\neg P \lor P) \lor (\neg Q \lor Q)$
 $\equiv \mathsf{T} \lor \mathsf{T}$
 $\equiv \mathsf{T}$.

Satisfiability

- <u>Definition</u>: A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that makes it true.
 - We call an assignment of truth values to its variables that makes the compound proposition true a <u>solution</u> of the satisfiability problem.

Satisfiability

- <u>Definition</u>: A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that makes it true.
 - We call an assignment of truth values to its variables that makes the compound proposition true a <u>solution</u> of the satisfiability problem.
- Definition: A compound proposition is <u>unsatisfiable</u> if it is false for all assignments of truth values to its variables.

Satisfiability

- <u>Definition</u>: A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that makes it true.
 - We call an assignment of truth values to its variables that makes the compound proposition true a <u>solution</u> of the satisfiability problem.
- <u>Definition</u>: A compound proposition is <u>unsatisfiable</u> if it is false for all assignments of truth values to its variables.
- Read textbook section 1.3.6 for examples of the applications of satisfiability

- Show that $(P \land Q) \Rightarrow P$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

- Show that $(P \land Q) \Rightarrow P$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

$$(P \land Q) \Rightarrow P \equiv \neg (P \land Q) \lor P$$

$$\equiv \neg P \lor \neg Q \lor P$$

$$\equiv (\neg P \lor P) \lor \neg Q$$

$$\equiv \mathsf{T} \lor \neg Q$$

$$\equiv \mathsf{T} .$$

- Show that $(P \land Q) \Rightarrow (P \Rightarrow Q)$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

- Show that $(P \land Q) \Rightarrow (P \Rightarrow Q)$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

$$(P \land Q) \Rightarrow (P \Rightarrow Q) \equiv \neg (P \land Q) \lor (P \Rightarrow Q)$$

$$\equiv \neg (P \land Q) \lor (\neg P \lor Q)$$

$$\equiv (\neg P \lor \neg Q) \lor (\neg P \lor Q)$$

$$\equiv (\neg P \lor \neg P) \lor (\neg Q \lor Q)$$

$$\equiv \neg P \lor \mathsf{T}$$

$$\equiv \mathsf{T}.$$

- Show that $\neg(P \Rightarrow Q) \Rightarrow \neg Q$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

- Show that $\neg(P \Rightarrow Q) \Rightarrow \neg Q$ is a tautology using logical equivalences.
- Recall that: $P \Rightarrow Q \equiv \neg P \lor Q$

$$\neg(P \Rightarrow Q) \Rightarrow \neg Q \equiv \neg(\neg P \lor Q) \Rightarrow \neg Q
\equiv \neg(\neg(\neg P \lor Q) \lor \neg Q
\equiv (\neg P \lor Q) \lor \neg Q
\equiv \neg P \lor T
\equiv T .$$

- Show that $\neg(P \Leftrightarrow Q) \equiv (P \Leftrightarrow \neg Q)$
- Recall that: $P \Leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$

- Show that $\neg(P \Leftrightarrow Q) \equiv (P \Leftrightarrow \neg Q)$
- Recall that: $P \Leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$

$$\neg(P \Leftrightarrow Q) \equiv \neg((P \land Q) \lor (\neg P \land \neg Q))$$

$$\equiv \neg(P \land Q) \land \neg(\neg P \land \neg Q)$$

$$\equiv (\neg P \lor \neg Q) \land (P \lor Q).$$

- Show that $\neg(P \Leftrightarrow Q) \equiv (P \Leftrightarrow \neg Q)$
- Recall that: $P \Leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$

$$\neg(P \Leftrightarrow Q) \equiv \neg((P \land Q) \lor (\neg P \land \neg Q))$$

$$\equiv \neg(P \land Q) \land \neg(\neg P \land \neg Q)$$

$$\equiv (\neg P \lor \neg Q) \land (P \lor Q).$$

$$P \Leftrightarrow \neg Q \equiv (P \land \neg Q) \lor (\neg P \land Q)$$

$$\equiv ((P \land \neg Q) \lor \neg P) \land ((P \land \neg Q) \lor Q)$$

$$\equiv ((\neg P \lor P) \land (\neg P \lor \neg Q)) \land ((Q \lor P) \land (\neg Q \lor Q))$$

$$\equiv \mathsf{T} \land (\neg P \lor \neg Q) \land (P \lor Q) \land \mathsf{T}$$

$$\equiv (\neg P \lor \neg Q) \land (P \lor Q) .$$

• Show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology.

- Show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology.
- Hint: Use a truth table

- Show that $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology.
- Hint: Use a truth table

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$P \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
Τ	Τ	T	T	${ m T}$	${ m T}$	${ m T}$	${ m T}$
Τ	Τ	F	Γ	\mathbf{F}	F	${ m F}$	${ m T}$
Τ	F	$\mid T \mid$	F	${ m T}$	${ m T}$	${ m F}$	${ m T}$
Τ	F	F	F	${ m T}$	F	${ m F}$	${ m T}$
F	Τ	$\mid T \mid$	Γ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	Τ	\mathbf{F}	Γ	F	${ m T}$	${ m F}$	${ m T}$
F	F	$\mid T \mid$	Γ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	F	F	$\mid T \mid$	${ m T}$	Τ	${ m T}$	m T