

Ch 1.1: Propositional Logic

ICS 141: Discrete Mathematics for Computer Science I

KYLE BERNEY
DEPARTMENT OF ICS, UNIVERSITY OF HAWAII AT MANOA

 <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.

 <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.

Ex.

- 1. The Sun is a star.
- 2. One day is 20 hours.
- 3. 1 + 1 = 2
- 4. 2 + 2 = 3

 <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.

Ex.

- 1. The Sun is a star.
- 2. One day is 20 hours.
- 3. 1 + 1 = 2
- 4. 2 + 2 = 3
- Why are the above examples propositions?
 - 1. True sentence
 - 2. False sentence
 - 3. True statement
 - 4. False statement

 Definition: A proposition is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.

- <u>Definition</u>: A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.
- Ex. NOT propositions
 - 1. What time is it?
 - 2. Pay attention.
 - 3. x + 1 = 2
 - 4. X + Y = Z

- <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.
- Ex. NOT propositions
 - 1. What time is it?
 - 2. Pay attention.
 - 3. x + 1 = 2
 - 4. X + Y = Z
- Why are the above examples NOT propositions?
 - 1. A question is not a statement
 - 2. A request is not a statement
 - 3. Not true or false
 - 4. Not true or false

- <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.
- Ex. NOT propositions
 - 1. What time is it?
 - 2. Pay attention.
 - 3. x + 1 = 2
 - 4. X + Y = Z
- Question: What happens if we assign values to the variables in 3. and 4.?

- <u>Definition:</u> A <u>proposition</u> is a declarative statement (i.e., a sentence that declares a fact) that is either true or false, but not both.
- Ex. NOT propositions
 - 1. What time is it?
 - 2. Pay attention.
 - 3. x + 1 = 2
 - 4. X + Y = Z
- Question: What happens if we assign values to the variables in 3. and 4.?
- Answer: They become propositions!
 - Will be either true or false statements (depending on the assigned values)

Definition: A propositional variable is a symbol (typically P, Q, R, or S) used to represent a proposition.

- Definition: A propositional variable is a symbol (typically P, Q, R, or S) used to represent a proposition.
- Definition: A proposition is assigned one of two <u>truth values</u>:
 - P = True, denoted T, if the proposition P is true
 - P = False, denoted F, if the proposition P is false

- Definition: A propositional variable is a symbol (typically P, Q, R, or S) used to represent a proposition.
- Definition: A proposition is assigned one of two <u>truth values</u>:
 - P = True, denoted T, if the proposition P is true
 - P = False, denoted F, if the proposition P is false
- Definition: A compound proposition is a proposition formed by combining two or more propositions using logical operators.

Logical Operators – Negation

- <u>Definition</u>: Let P be a proposition. The <u>negation</u> of P is a logial operator denoted as $\neg P$ (also commonly denoted as \overline{P} or |P|).
- Read as "Not P"
- The truth value of $\neg P$ is the opposite of the truth value of P

$$\begin{array}{c|c}
P & \neg P \\
\hline
T & F \\
F & T
\end{array}$$

Logical Operators – Negation

- <u>Definition</u>: Let P be a proposition. The <u>negation</u> of P is a logial operator denoted as $\neg P$ (also commonly denoted as \overline{P} or |P|).
- Read as "Not P"
- The truth value of $\neg P$ is the opposite of the truth value of P

$$\begin{array}{c|c}
P & \neg P \\
\hline
T & F \\
F & T
\end{array}$$

 Definition: A truth table is a table used to show all possible truth values of a logical expression based on its component propositions.

Logical Operators – Conjunction

- <u>Definition</u>: Let P and Q be propositions. The <u>conjunction</u> of P and Q is a logical operator denoted as $P \wedge Q$.
- Read as "P and Q"
- The truth value of $P \wedge Q$ is true if both P and Q are true; and false otherwise.

P	Q	$P \wedge Q$
T	Τ	Γ
Τ	\mathbf{F}	F
F	Γ	\mathbf{F}
F	F	F

Logical Operators – Disjunction

- <u>Definition</u>: Let P and Q be propositions. The <u>disjunction</u> (also known as the <u>inclusive or</u>) of P and Q is a logical operator denoted as $P \lor Q$.
- Read as "P or Q"
- The truth value of $P \lor Q$ is true if at least one of P or Q are true; and false otherwise.

P	Q	$P \vee Q$
\overline{T}	Τ	${ m T}$
T	\mathbf{F}	${ m T}$
F	T	${ m T}$
F	F	${ m F}$

Logical Operators – Exclusive Or

- <u>Definition</u>: Let P and Q be propositions. The <u>exclusive or</u> of P and Q is a logical operator denoted as $P \oplus Q$.
- Read as "P xor Q"
- The truth value of $P \oplus Q$ is true if exactly one of P or Q are true; and false otherwise.

P	Q	$P \oplus Q$
Τ	Τ	F
Τ	F	${ m T}$
F	T	${ m T}$
F	F	F

Logical Operators – Tips to Remember

- $P \wedge Q$ vs. $P \vee Q$
 - The operator ∧ looks similar to an A (without the middle line), representing "And" (i.e., conjunction).

Logical Operators – Tips to Remember

- $P \wedge Q$ vs. $P \vee Q$
 - The operator ∧ looks similar to an A (without the middle line), representing "And" (i.e., conjunction).
- Inclusive Or vs. Exclusive Or
 - Inclusive Or includes the case where both P and Q are true.
 - Includes more True values
 - Exclusive Or excludes the case where both P and Q are true.
 - Excludes more True values

Conditional Statements

- <u>Definition</u>: Let P and Q be propositions. The <u>conditional statement</u> is denoted as $P \Rightarrow Q$ (also commonly denoted as $P \rightarrow Q$).
- Read as "P implies Q" or "if P, then Q"
- The truth value of $P \Rightarrow Q$ is false if P is true and Q is false; and true otherwise.

P	Q	$P \Rightarrow Q$
Т	Т	Τ
Τ	F	F
F	Γ	${ m T}$
F	F	Τ

Conditional Statements – Other Terminology

- A varitey of terminology is used to express $P \Rightarrow Q$.
 - "if *P*, then *Q*"
 - "if *P*, *Q*"
 - "P is sufficient for Q"
 - "Q if P
 - Q when P
 - "a necessary condition for P is Q"
 - "Q unless $\neg P$ "

- "P implies Q"
- "*P* only if *Q*"
- "a sufficient condition for Q is P"
- "Q whenever P"
- "Q is necessary for P"
- "Q follows from P"
- "Q provided that P"

Notable Conditional Statements – Converse

• Definition: Let P and Q be propositions. The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
\overline{T}	Т	Τ	Τ
Τ	F	F	T
F	$\mid T \mid$	Γ	F
F	F		T

Notable Conditional Statements – Inverse

■ <u>Definition</u>: Let P and Q be propositions. The <u>inverse</u> of $P \Rightarrow Q$ is $\neg P \Rightarrow \neg Q$.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg P \Rightarrow \neg Q$
Τ	T	T	F	F	T
Τ	F	F	F	Τ	${ m T}$
F	T	${ m T}$	Τ	F	${ m F}$
F	F	${ m T}$	T	T	T

Notable Conditional Statements – Contrapositive

■ <u>Definition</u>: Let P and Q be propositions. The <u>contrapositive</u> of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$
Т	Т	Τ	F	F	T
Τ	F	F	F	Τ	F
F	Т	Τ	Τ	F	T
F	F	T	Τ	T	Γ

Notable Conditional Statements - Contrapositive

■ <u>Definition</u>: Let P and Q be propositions. The <u>contrapositive</u> of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.

• <u>Definition</u>: Two propositions R and S are <u>logically equivalent</u>, denoted $R \equiv S$, if the truth values for R and S are always the same.

Notable Conditional Statements – Contrapositive

■ <u>Definition</u>: Let P and Q be propositions. The <u>contrapositive</u> of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$	
\overline{T}	Т	Т	F	F	Τ	
Τ	F	F	F	Т	F	
F	T	Τ	Т	F	Τ	
F	F	Т	Γ	Т	Τ	
Logically Equivalent						

Biconditionals

- <u>Definition</u>: Let P and Q be propositions. The <u>biconditional</u> is denoted as $P \Leftrightarrow Q$ (or P iff Q).
- Read as "P if and only if Q"
- The truth value of $P \Leftrightarrow Q$ is true when P and Q have the same truth values; and false otherwise.

P	Q	$P \Leftrightarrow Q$
Т	Т	Τ
Τ	F	F
F	Т	F
F	F	${ m T}$

Precedence of Logical Operators

- 1. Negation: "not" (\neg)
- 2. Conjunction: "and" (∧)
- 3. Disjunction: "inclusive or" (∨)
- 4. Conditional: "implies" (\Rightarrow)
- 5. Biconditional: "if and only if" (\Leftrightarrow)

Precedence of Logical Operators

- 1. Negation: "not" (\neg)
- 2. Conjunction: "and" (∧)
- 3. Disjunction: "inclusive or" (∨)
- 4. Conditional: "implies" (\Rightarrow)
- 5. Biconditional: "if and only if" (\Leftrightarrow)

 Note: Exclusive or (⊕) has the same precedence as inclusive or (∨)

- Computers represent information using bits.
- Definition: A bit is a symbol with two possible values, 0 and 1.
 - The word bit comes from the usage of binary digit in the binary representation of numbers (i.e., base-2 representation).
 - Bits are used in logic to represent true and false values
 - 1 bit is used to represent true
 - 0 bit is used to represent false

- Bit operators correspond to logical operators
 - AND operator (∧)
 - OR operator (∨)
 - XOR operator (⊕)

\boldsymbol{x}	y	$x \wedge y$	$x \vee y$	$x \oplus y$
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

- Definition: A bit string is a sequence of zero or more bits.
- Definition: The length of a bit string is the number of bits in the string.
- Bit operators can be extended to bit strings
 - Bitwise AND (∧)

- Definition: A bit string is a sequence of zero or more bits.
- <u>Definition</u>: The <u>length</u> of a bit string is the number of bits in the string.
- Bit operators can be extended to bit strings
 - Bitwise OR (∨)

- Definition: A bit string is a sequence of zero or more bits.
- <u>Definition</u>: The <u>length</u> of a bit string is the number of bits in the string.
- Bit operators can be extended to bit strings
 - Bitwise XOR (⊕)

	1	()	1	1	C	1	1	()
\bigoplus	O	O	()	1	1	1	()	1
	1	()	1		1	$\overline{0}$	1	$\overline{1}$

- Construct a truth table for $(P \lor \neg Q) \Rightarrow Q$
- Recall that:

P	Q	$P \Rightarrow Q$
Τ	Т	${ m T}$
Τ	F	${ m F}$
F	Γ	${ m T}$
F	F	${ m T}$

• Construct a truth table for $(P \lor \neg Q) \Rightarrow Q$

P	Q	$\neg Q$	$P \vee \neg Q$	$(P \vee \neg Q) \Rightarrow Q$
T	Τ	F	Τ	\mathbf{T}
T	F	Γ	Τ	F
F	T	F	F	\mathbf{T}
F	F	$\mid T \mid$	T	F

- Construct a truth table for $(P \Leftrightarrow Q) \oplus (\neg P \Leftrightarrow Q)$
- Recall that:

P	Q	$P \Leftrightarrow Q$
Т	Т	Τ
Τ	F	F
F	Т	F
F	F	Τ

■ Construct a truth table for $(P \Leftrightarrow Q) \oplus (\neg P \Leftrightarrow Q)$

P	Q	$P \Leftrightarrow Q$	$\neg P$	$\neg P \Leftrightarrow Q$	$(P \Leftrightarrow Q) \oplus (\neg P \Leftrightarrow Q)$
Τ	Τ	Τ	F	F	Γ
Τ	F	F	F	Τ	Γ
F	Τ	F	T	Τ	Γ
F	F	Γ	Τ	F	Γ

- Construct a truth table for $(P \Rightarrow Q) \land (\neg P \Rightarrow R)$
- Recall that:

P	Q	$P \Rightarrow Q$
Τ	Т	${ m T}$
Τ	F	${ m F}$
F	Γ	${ m T}$
F	F	${ m T}$

• Construct a truth table for $(P \Rightarrow Q) \land (\neg P \Rightarrow R)$

P	Q	R	$P \Rightarrow Q$	$\neg P$	$ \neg P \Rightarrow R $	$(P \Rightarrow Q) \land (\neg P \Rightarrow R)$
Τ	Γ	Т	T	F	Τ	T
Τ	$\mid T \mid$	F	Γ	F	Γ	${ m T}$
Τ	F	Т	F	F	Γ	${ m F}$
Τ	F	F	F	F	Γ	${ m F}$
F	$\mid T \mid$	Т	Γ	Γ	Γ	${ m T}$
F	$\mid T \mid$	F	Γ	Γ	\mathbf{F}	${ m F}$
F	F	Т	Γ	Γ	Γ	T
F	$\mid \mathrm{F} \mid$	F	T	Γ	F	F