Kyle Berney

SUMMARY

- Ph.D. in Computer Science with research spanning the fields of high-performance computing, parallel algorithms, cache-efficient algorithms, and general-purpose computing on graphics processing units (GPGPU)
- 8 years of CUDA C/C++ research and development experience

Education

Ph.D. in Computer Science	Aug. 2023
University of Hawai'i at Mānoa	Honolulu, HI
Dissertation: "Parallel Cache-Efficient Algorithms on GPUs"	
M.S. in Computer Science	May 2018
University of Hawai'i at Mānoa	Honolulu, HI
Thesis: "Beyond Binary Search: Parallel In-Place Construction of Implicit Search Tree Lag	youts"
B.S. in Computer Science and Mathematics – double major	Dec. 2014
University of Hawai'i at Mānoa	Honolulu, HI
Experience	
Lecturer	Jan. 2025 – Current
Dept. of Information and Computer Sciences, University of Hawai'i at Mānoa	Honolulu, HI
• ICS 141: Discrete Mathematics for Computer Science I (SP25: 3 sections)	
• ICS 311: Algorithms (SP25: 1 section)	
Graduate Research and Teaching Assistant	Jan. 2016 – Aug. 2023
Dept. of Information and Computer Sciences, University of Hawai'i at Mānoa	Honolulu, HI
Research Assistant	
• Henri Casanova, Concurrency Research Group (SU23, SP23)	
 * Assisted in research on worknow simulation and calibration • Nodari Sitchinava, Algorithms and Parallel Computing Group (FA21, FA19, SU19, FA * Conducted research on parallel cache-efficient algorithms with applications to GF 	A18, SU18, FA17) PUs
* Maintained Unix machines used primarily for GPU experiments via the CUDA to Teaching Assistant	oolkit
• ICS 212: Program Structure, Ravi Narayan (FA22)	
• ICS 312: Machine-Level and Systems Programming, Henri Casanova (SP22, SP21, FA	A20)
• ICS 443: Parallel Algorithms, Nodari Sitchinava (SP22)	
• ICS 432: Concurrent and High-Performance Programming, Henri Casanova (FA20)	
• ICS 311: Algorithms, Nodari Sitchinava (SP20, SP19, SP18, SP17)	
• ICS 141: Discrete Mathematics for Computer Science I, Lee Altenberg (FA16)	
• ICS 241: Discrete Mathematics for Computer Science II, Kazuo Sugihara (SP16)	
Satellite Systems Programmer	July 2012 – Aug. 2013
Hawaii Space Flight Laboratory, University of Hawai'i at Mānoa	Honolulu, HI
• Developed a data management tool written in C++ using the Qt framework that crea various data used within COSMOS: Comprehensive Open-Architecture Space Mission	tes, displays, and modifies a Operations System
Hawaii Space Grant Consortium Fellowship	Jan. 2012 – Dec. 2012
Hawaii Space Grant Consortium, University of Hawai'i at Mānoa	Honolulu, HI
Mentor: Norbert Schorghofer, Institute of Astronomy, University of Hawai'i at Mānoa	
• Implemented and optimized a model for lunar surface temperature balance calculation	ns on a GPU using CUDA C
• Implemented and optimized a model for lunar surface temperature balance calculation RESEARCH	ns on a GPU using CUD

Eliminating GPU Bank Conflicts in GPU Mergesort

Authors: Kyle Berney, Nodari Sitchinava

In peer review, 2025

- Designed a bank conflict free algorithm for the pairwise Mergesort algorithm on GPUs
- Modified the CUDA C++ implementation of GPU pairwise Mergesort provided in the Thrust library to use the bank conflict free approach
- Verified empirically that the bank conflict free implementation obviates the slowdown due to bank conflicts

A Parallel Priority Queue with Fast Updates for GPU Architectures

Authors: Kyle Berney, John Iacono, Ben Karsin, Nodari Sitchinava

In peer review, 2025 (preprint available on arXiv)

- Performed amortized analysis on the work, depth, and number of I/O's for the parallel bucket heap
- Implemented the parallel bucket heap and a parallel variant of Dijkstra's algorithm for single-source shortest paths (SSSP) using CUDA C++ and the Thrust and CUB libraries
- Showed that on dense graphs with high diameter, our SSSP implementation outperforms the state-of-the-art delta-stepping GPU implementations by up to 5.4x

WfCommons: Data Collection and Runtime Experiments using Multiple Workflow Systems

Authors: Henri Casanova, Kyle Berney, Serge Chastel, Rafael Ferreira da Silva IEEE Computers, Software, and Applications Conference, 2023

• Wrote a Nextflow workflow "tracer" using Groovy and Python that produces WfCommons workflow instances

Engineering Worst-Case Inputs for Pairwise Merge Sort on GPUs

Authors: Kyle Berney, Nodari Sitchinava

IEEE International Parallel and Distributed Processing Symposium, 2020

- Analyzed the worst-case number of bank conflicts in shared memory for GPU pairwise merge sort
- Constructed the corresponding worst-case inputs and demonstrated experimentally, using the Thrust and Modern GPU libraries, that these inputs result in up to 50% slowdown compared to the performance on random inputs

Beyond Binary Search: Parallel In-Place Construction of Implicit Search Tree Layouts

Authors: Kyle Berney, Henri Casanova, Ben Karsin, Nodari Sitchinava IEEE Transactions on Computers, 2021 IEEE International Parallel and Distributed Processing Symposium, 2018

- Developed parallel in-place algorithms for permuting a sorted array into various implicit search tree layouts
 - * Level-order binary search tree layout (BST)
 - * Level-order B-tree layout (B-tree)
 - * van Emde Boas search tree layout (vEB)
- Analyzed the work, depth, and number of I/O's for each permutation
- Implemented the permutation and corresponding querying algorithm for each layout on both CPU and GPU platforms using C++ with OpenMP and CUDA C++, respectively
- Empirically quantified the break-even point where the performance benefits of querying each search tree layout outweighs the cost of permuting into the layout

TECHNICAL SKILLS

Languages: CUDA, C, C++, Java, Python, Bash Profiling Tools: nvprof, NVIDIA Nsight Compute, NVIDIA Visual Profiler, Perf Miscellaneous: OpenMP, Git, LaTeX, Unix, SLURM, Makefile

PROFESSIONAL SERVICE

External Reviewer:

- IEEE International Conference on High Performance Computing, Data, and Analytics * July 2016
- ACM Symposium on Parallelism in Algorithms and Architectures
 - * March 2022
 - * March 2020
 - * March 2018
- Journal of Parallel and Distributed Computing
 - * August 2019