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Abstract We provide a fresh look at the problem of exploration in reinforcement learning, drawing on ideas from
information theory. First, we show that Boltzmann-style exploration, one of the main exploration methods used in
reinforcement learning, is optimal from an information-theoretic point of view. Second, we address the problem of
curiosity-driven learning. We propose that, in addition to maximizing the expected return, a learner should chose a
policy that maximizes the predictive power of its own behavior, measured by the information that the most recent
state-action pair carries about the future. This makes the world “interesting” and exploitable. The general result has the
form of Boltzmann-style exploration with a bonus that contains a novel exploration-exploitation trade-off that emerges
from the proposed optimization principle. Importantly, this exploration-exploitation trade-off is also present when the
“ temperature”-like parameter in the Boltzmann distribution tends to zero, i.e. when there is no exploration due to
randomness. As a result, exploration emerges as a directed behavior that optimizes information gain, rather than being
modeled solely as behavior randomization.

1 Motivation

The problem of optimal decision making under uncertainty is crucial both to animals and to artificial intelligent agents.
Reinforcement learning (RL) addresses this problem by proposing that agents should choose actions such as to max-
imizes an expected long-term return provided by the environment [23]. To achieve this goal, an agent has to explore
its environment, while at the same time exploiting the knowledge it currently has in order to achieve good returns. In
existing algorithms, this trade-off is achieved mainly through simple randomization of the action choices. Practical im-
plementations rely heavily on heuristics, though theoretically principled approaches also exist (see Sec. 5 for a more
detailed discussion). In this paper, we look at the exploration-exploitation trade-off from a fresh perspective: we use
information-theoretic methods both to analyze an existing exploration method, and to propose a new one.

Recently, an information theoretic framework for behavioral learning has been presented by Still [19], with the goal
of providing a good exploration strategy for an agent who wants to learn a predictive representation of its environment.
We use this framework to tackle reward-driven behavioral learning. We propose an intuitive optimality criterion for
exploration policies which includes both the reward received, as well as the complexity of the policy. Having a simple
policy is not usually a stated goal in reinforcement learning, but it is desirable for bounded-rationality agents, and it
is especially useful in the context of developmental agents, which should evolve increasingly complex strategies as
they get more experience, and as their knowledge of the environment becomes more sophisticated. We show in Sec. 2
that the general solution of the proposed optimization problem is a Boltzmann-style exploration algorithm. The trade-
off between the return, on the one hand, and the average bit cost of the policy, on the other hand, is controlled by
a “temperature”-like parameter. At high temperatures, simplicity is more important than return. As the temperature
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decreases, return becomes increasingly important; the policy converges to the optimal-return policy as the temperature
goes to zero.!

Animals often explore their environment not only to gather rewards, but also just for the sake of learning about it.
Such learning is useful because the environment may change over time, and the animal may need to adapt to this change.
Hence, it is advantageous to know more about the environment than what is strictly necessary in order to maximize the
long-term return under the current conditions. Similar arguments have been presented in [18] as well as in many papers
on transfer of knowledge in reinforcement learning (see [24] for a survey). In Sec. 3, we formulate this goal in terms of
maximizing future return, while at the same time maximizing the predictive power of the behavior, which we measure
by the information carried about the future. Predictive information, defined as the mutual information between the past
and the future within a time series, measures temporal correlations and is related to other measures of complexity [4,
7]. It provides a measure of how complex, or “interesting”, a time series is. Our objective function also contains a term
which ensures that the agent continues to prefer simple policies (as in the case of simple return maximization). This term
penalizes behaviors for retaining more memory about the past than is necessary to predict the future. As a consequence it
ensures that undesirable repetitive behaviors are avoided. We show that the resulting optimal policy contains a trade-off
between exploration and exploitation which emerges naturally from the optimization principle.

Our approach is similar to rate distortion theory [17], which is based on the fact that approximating a true signal
using a compressed representation will cause a loss, computed as the expected value of a distortion function. The choice
of the distortion function implicitly provides the distinction of relevant and irrelevant features of the data. Information
theoretic approaches inspired by some form of rate-distortion theory have been used widely in machine learning, for
example for clustering and dimensionality reduction [26,21,6,20]. However, to our knowledge, this approach has not
been used in reinforcement learning prior to our work.

The paper is structured as follows. In Sec. 2, we lay the information-theoretic foundation of exploration for a re-
inforcement learning agent, whose main goal is to optimize long-term returns. Next, we formulate the problem of
curiosity-driven reinforcement learning and solve it using a similar principle that includes the maximization of predic-
tive information (Sec. 3). Finally, we discuss algorithmic implementation issues in Sec. 4, and close with a discussion
of the relationship of our approach to classical and current work in RL in Sec. 5.

2 Information-theoretic approach to exploration in reinforcement learning

We consider the standard RL scenario [23] in which an agent is interacting with an environment at a discrete time
scale. At each time step ¢, the agent observes the state of the environment, z; € X and takes an action a; € A. In
response to its action, the agent receives an immediate (extrinsic) reward, r;1 and the environment transitions to a next
state x4 1. We assume that the environment is Markovian. Hence, the reward is expressed as r;11 = R(w¢, at), where
R : X x A — R is the reward function, and the next state z;,1 is drawn from the distribution p(X; 1|2, a;)>. The
reward function and the next-state transition distributions constitute the model of the environment. A way of behaving,
or policy, m : X x A — [0,1] is a probability distribution over actions conditioned on the state. Each policy has an
action-value function associated with it:

Q™ (z,a) = Ex[res1 +yreas + 72rt+3 +.. | Xt =2,A = al, )

where v € (0, 1) is a discount factor expressing the fact that later rewards should be emphasized less. The interpretation
of this value function is that the agent starts in state x, chooses a as its first action and thereafter chooses actions
according to 7. The goal of a reinforcement learning agent is to find a policy that maximizes the value function for all
state-action pairs. In a finite Markov Decision Process, there is always at least one deterministic policy that achieves this
goal, and many methods can be used to find such a policy (see [23] for a comprehensive review). In some situations,
e.g. when the state space X is too large and value functions cannot be represented exactly, policies are compared with
respect to a starting state distribution, po(X). Then, the goal is to maximize the expected return:

VT=3">" po(x)r(alx)Q" (v, a) (@)

rzeX acA

The advantage of using this criterion is that it allows a policy to be characterized by a single number, and offers a
clear ordering of policies. Then, the optimal policy for the MDP maximizes V™, for example, for the uniform starting
distribution.

' 'We will refer to this parameter as the temperature in the rest of the paper. One has to keep in mind that this is a metaphor, not a physical
temperature.
2 Here and throughout, we use capital letters to denote random variables, and small letter to denote particular realizations of these variables.



Suppose that we had a set of policies that all produce the same expected return. Which policy should be preferred?
If one is to implement the policy on a real system, e.g. a robot, then it is reasonable to prefer the simplest policy, i.e.
the policy that can be specified with the smallest number of bits. To make this precise, let us re-interpret the meaning
of a policy. The action can be viewed as a summary of the state of the system. Therefore, we view the act of mapping
states onto actions as lossy compression. If a large group of states share the same optimal action, then that action can
be viewed as a compressed representation for this state “cluster”, a representation which is sufficient from the point of
view of attaining a desired level of return.

In order to formalize this intuition, we revisit rate distortion theory, introduced by Shannon [17]. Rate distortion
theory measures the cost of approximating a signal Z by a signal Y, using the expected value of some distortion function,
d(Z,Y). This distortion measure can, but need not, be a metric. Lossy compression is achieved by assigning Z to Y via
the probabilistic map P(Y'|Z), such that the mutual information:
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is minimized. The minimization is constrained by fixing the expected distortion > . Zye oy P(z,9)d(z,y). In
other words, recalling the meaning of information in terms of bit message length, among the representations with the
same quality, the most compact one will be preferred.

We interpret return as a function that measures quality, rather than distortion. The action is interpreded as a lossy
summary of the state; hence, among the policies with the same return, we will find the most compact one. Considering
a set of policies that achieve a fixed average return V'™, we can express this principle through the following optimization
problem:

min I" (A4, X) (3)
™
subjectto: V7 = const. and: Z m(alz) =1,Vz € X and: w(alz) > 0,Vz € X,Va € A. “)
acA

Here, 7 is the policy we seek, which can be viewed as a probabilistic assignment of states to actions. The second
constraint ensures normalization. The average return of policy m, V'™, is defined in (2). The term I™ (A, X') denotes
the information that the action A carries about the state X under policy 7, where the joint distribution is given by

p(X, A) = m(AX)p™ (X):
=> Y w(alz)p"(x)log {ZS:L(E))] : 6))
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Note that the information that the action carries about the state depends also on the stationary distribution of states under
policy 7, p™ (which we assume exists, as is standard in RL) and on the average action probability, defined for any action
aas:p”(a) =) cx P (z)m(alr).

This optimization problem is complex, because of the dependence on the stationary distribution, which in general
is unknown (though computable) and which changes as the policy 7 evolves during learning. A standard approach
for changing the policy in reinforcement learning is to assume that we fix the policy 7, compute its return, but then we
consider a small perturbation around it at a given time step ¢. Let V;™ (q) be the expected return if the agent acts according
to policy 7 on all time steps, except on time step ¢, when it chooses its action according to a different action distribution
q:

t—1
Vi@ = Y. polo) | [] majle)p(@iles, aj) | alaclzs) {Z V' R(xs, a:) + 7' Q" (w1, ar)
Toag...T,at =0

where g(a¢|z¢) is the new probability of choosing action a; from the state x¢, which we seek. Let I (A, X;) denote the
information that the action A; carries about the state X;:

At,Xt Z Z (a|z)pf () log {p(t (|x))} ’ (6)
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where z and a range over the possible values of random variables X; and Ay, pf () is the probability of arriving at state
z on time step ¢ if the agent starts with a state drawn from py and chooses actions according to 7:

pi@) =p"(Xe=xz)= > polzo)m(aolwo)p(@1lr0,a0) .. m(ar—1|wi—1)p(Xs = zlwi—1,ai-1),
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and pf (a) = p™(At = a) = 3, cx Pf (z)a(Ar = alx).



Now, the optimization problem can be written as:
mqin I (Ag, Xy)

subject to: V" (¢) = const. and: Z q(alz) = 1,Vx € X, and: g(alz) > 0,Vz € X,Va € A.
a€A

This optimization principle has a dual form, where we maximize the average return under the constraint that the
“size” of the policy is kept constant. Note that this view is mathematically equivalent, but potentially very useful when
we think of agents with limited computational capacity (e.g., robots with limited on-board computation). In this case,
one may just want to find the best policy which still fits on the available physical system. Similar capacity constraints
may apply to animals. The dual form is the following:

max Vi (q) @)

subject to: I (A¢, X¢) = const.  and: Z q(alz) =1; Vo € X. ®)
acA

A similar cost function was given by Bagnell and Schneider, as well as Peters and Schaal [3,12]; however, they only
used a linearization to compute a better type of policy gradient update.
We can now re-write the constrained optimization principle, using the Lagrange multipliers A and p(x):

max Flq], &)

where the objective function is a functional of the policy ¢(A¢| X¢), given by

Flg] = Vi (q) — Mg (A, Xo) + ) pu(x) (Z q(alz) - 1) : (10)
zeX a€EA
The solution is obtained by setting the variation of F' to zero which leads to the optimal policy
Gopt (At = a| Xy = 2) = M6§Q”(m,a) — LeiQ”(Iﬂ)ﬁLlOgP?(H) veeX.ae A (1)
P Z(x) Z(x) ’ ’

which has to be solved self consistently, together with:

pi(a) =) dopt(alz)pf (), Va € A (12)
rzeX

The partition function Z(z) = EaeApf(a)e%Qﬂ(w’“) ensures normalization. This solution is similar to Boltzmann
exploration, also known as softmax action selection [23]. The only difference is that here, we have an additional “com-
plexity penalty”, log p} (a). We note that by a similar calculation, if one tries to optimize the return at a fixed level of
randomness (using the Shannon entropy as a measure for randomness), one recovers exactly Boltzmann exploration.
This follows immediately from the results in [14], and the arguments presented in [8]. In contrast, here we penalize
explicitly for the complexity of the policy, measured by the coding cost. The result is that there is a penalty for using
more actions than necessary (comp. Eq. (11)). This is useful not only when the agent has limited computational capacity,
but also when the action space is very large (for example, in combinatorial optimization or inventory control problems).
In this case, Eq. (11) may force the agent to use only a subset of the entire action space, which makes the learning task
easier. The policy update in Eq. (11) appears also related to the ones suggested in references [2,11] despite of their
different roots.

This Boltzmann-style softening of the policy optimally trades the complexity of the policy for average return. The
trade-off is governed by the “temperature”-like parameter A, and exploration takes place due to fluctuations only at
non-zero temperature, when emphasis is put on the compactness of the policy. As A tends to zero, the information
minimization constraint in Eq. (10) becomes less relevant, and one can easily show that in the limit, the optimal policy
becomes deterministic if there are no degeneracies.® The optimal action becomes a function of the past, and is chosen
to maximize the return:

a®P(z) = arg max Q" (z,a) (13)

3 1If the equivalent of the ground state is degenerate, then all N actions that maximize Q™ (z, a) occur with probability 1/N, while all other
actions occur with probability 0.



3 Curiosity-driven reinforcement learning

Intuitively, exploration is driven by the curiosity to visit unknown areas of the state space. The theory we have developed
so far is lacking any notion of curiosity. Apart from the rate constraint, the agent is just maximizing the return, as defined
based on external rewards received from the environment. In this section, we present a formalization of curiosity based
on information-theoretic principles. Drawing on ideas from our previous work [19], we postulate that the main goal
of a curious agent is to create a time series of states that is interesting. We measure “interestingness” by means of the
predictive power that the agent’s behavior carries, as defined in [19]. Intuitively, if a time series has high predictive
information, there will be data available for learning about a variety of situations, and also about different ways of
behaving. In the context of a fully observable Markovian environment, this is the mutual information carried by the state
of the environment (i.e., the sensation of the agent) at time ¢, together with the action, about the state of the environment
at time ¢+ 1. Then, our goal becomes to find the policy that maximizes predictive power. We note that this is important not
only in Markovian environments, but also in extensions to Partially Observable Markov Decision Processes (POMDPs),
where the exact state of the environment is unknown. Maximizing predictive information is highly desirable in this
setting, because it means that the agent is able to predict well its future sensation given the past data. The extension to
the POMDP setting is straightforward given the theory outlined in [19].

Formally, by taking predictive power into account, we now have another constraint in the optimization principle.
Using Lagrange multipliers, as before, we can write

méxx Flq], (14)

where the objective function is now given by

Flg) = I ({X0, A}, Xo1) + Vi (@) = MF (A X0) + Y plx) ( > afala) - 1) . (15)
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We obtain the solution as before. However, now we have an additional contribution from 01§ ({X¢, A¢}, X¢41)/0q, as
the following term:

Dxilp(Xet1]Xt, Ar)[[p™ (Xt41)] (16)

where the Kullback-Leibler divergence is defined as

Drc [ (X)pa )] = Y- o)t | P15 a7
and
P (Xpy1=2') = Z Z p(Xpy1 = 2’|z, a)q(alz)p] (z), V' € X (18)
a€A zeX

With the extra contribution (16), the optimal solution now becomes

Gopt (At = a| Xy =) = %e% (DKL[p(XtJrl|Xt:I,At:a)Hp"(Xt+1)]+aQ7r(z,a),)’ Vz € X,Va € A. (19)
The first term in the exponent drives the agent towards exploration. The optimal action will maximize the divergence
between the distribution over the next state, given the curent state x and the action a, to the average distribution over
the next state. This means that the optimal action will produce a next state with a conditional probability distribution
far from the average distribution. The second term is the value maximization, as before. The exponent in Eq. (19) thus
represents a trade-off between exploration and exploitation. This emerges from the optimization principle.
As A — 0, the policy will become deterministic, and with probability one, the chosen action will be the one that
maximizes the functional in the exponent of equation (19):*

aOpt(x) = argmgx[DKL[p(XHﬂXt =x, At = a)||p" (X¢11)] + aQW(x,a)] (20)

Note that the optimal action includes a natural trade—off between exploration and exploitation, even when the policy is
deterministic! This is not the case for pure Boltzmann-style exploration, where the optimal action under a deterministic
policy simply maximizes the return, subject possibly to size constraints (see Eq. (13)).

The parameter o can be viewed as a measure of how interested the agent is in obtaining a reward. For example, if
the reward is energy intake, then o could be set by measuring the charge of the batteries of a robot, and would represent
how “hungry” the agent is.

4 This is true if there are no degeneracies, otherwise all those actions occur with equal probability, as in Sec. 2.



3.1 Illustrations

To build some intuition about what this approach does, we consider a couple of simple examples. First, imagine a world
in which there are two states, € {0, 1}, and assume that o = 0, so the optimal action becomes the one that maximizes
only the predictive power. Consider a continuous range of actions a € [0, 1]. The value of the action expresses how
strongly the agent tries to stay in the same state or leave it, such that « = 0 means that the agent wants to remain in the
same state, « = 1/2 means that the agent is ambivalent about staying or leaving, and a = 1 means that the agent tries to
switch state. Let the Markovian transitions of the environment be given by p(z'|x, a) = a, Vz, ', Va. Then, the optimal
policy, Eq. (19), chooses only those two actions which result in the largest predictability, namely ¢ = 0 and ¢ = 1,
and it chooses between these two actions with equal probability. This “clever random” policy is an example of balance
between control and exploration, as mentioned in [19].

As a second case, consider a two-state world in which there are only two actions, STAY or FLIP, a € {s, f}, and
the transition probabilities are such that one state is completely reliable: p(0|0, s) = p(1]0, f) = 1, while the other state
is completely unreliable p(0|1,s) = p(0|1, f) = 1/2. This is a test for our information theoretic objective: if we are
doing the right thing, then we should find that in the absence of a reward (or an interest in a reward, a = 0), the optimal
curious policy should enable exploration of the combined state-action space, which means that we should not stay in
the more reliable state with probability 1. Thus, if we find that the optimal policy is 7(s|0) = 1, then we know that our
objective is wrong. Maximizing I[{X¢, A:}; X¢41] results asymptotically in the policy 7(s|0) = 3/4, which balances
between exploration and choosing a reliable state, i.e. control. Note that it is obvious that the policy is random in state
1, since Dk, [p(Xe4+1|Xt = 1, At = 9)||p(Xet1)] = DxLp(Xex1]1Xt = 1, A = f)||p(Xt+1)]- All calculations for this
section are in the Appendix.

If our criterion was incorrect, the policy for state 0 would be 7(s|0) = 1, making the agent stick to the more
predictable state. This mean that some of the state-action space is never explored, which is undesirable for learning. It
is instructive to see that maximizing 7[X;; X¢41], on the other hand, results in 7(s|0) = 1. This simple case should be
compared to results reported in [1].

4 Algorithmic issues

The optimal solution consists of Eq. (19), which has to be solved self consistently, together with Eq. (18). Furthermore,
the action-value function ) has to be estimated. In this section, we discuss how this can be implemented in practice.

We propose an implementation that is inspired by the usual Boltzmann exploration algorithm. The algorithm pro-
ceeds as follows.

1. Initialize ¢ + O and get initial state z¢. Initialize 7(a|z),Vz € X,Va € A (e.g., uniformly randomly) and initialize
the action-value function Q.
2. Repeat at every time step ¢
(a) Update p¢(z),Vx € X (the current estimate of the state visitation distribution)
(b) Initialize ¢(¥ (a|z),Va € A, V2 € X
(c) Repeat the following updates, until the difference between q(j ) and q(j 1) is small:

P (@) « >~ qY (alz)pi(z),Va € A @1

PV @) < 303 p(aa, 2)qY (alz)p(x), va' € X 2)

) ©)) 1 )

q(]+1)(a|x) — 20’)((2)) exp [X(DKL [p(Xt+1|a,x)Hp(])(Xt+1)] + aQ(x,a))} Ve e X,Vae A (23)
Update 7 + ¢U+1)

(d) Choose action a; ~ 7(-|z¢) and obtain reward r4y; and next state x4 1

(e) Update the action-value function estimates Q.

) t+t+1

In this algorithm, step 2a can be performed exactly by using the true model and all the previous policies; the update
of the model is similar the one in Eq. (22); we note that this is exactly the same type of update used in the forward
algorithm in a Hidden Markov Model (HMM). However, this computation can be expensive if the number of states is
large. As a result, in this case we would use the state samples x, k < t, to estimate p(x) approximately.

The initial value ¢(%) (a]z) is important, as it will influence the point to which iteration 2c converges (convergence is
guaranteed to a locally optimal solution). A good solution would be to to start with the result of the previous iteration,
under the assumption that the policy will change fairly smoothly from one time step to the next.



In principle, the action-value function @) should be re-computed exactly at every step, using the known model and
the computed policy. This involves solving a system of linear equations with |X| x |A| unknowns. While this may be
feasible for small environments, it is computationally expensive for larger problems. In this case, the value Q(x¢, at)
can instead be updated incrementally, using the standard temporal-difference learning approach (i.e., a learning rule
like Sarsa or Q-learning; see [23] for details). Intuitively, this approach should work well if the policy changes slowly,
because the action-value function will only change around the current state x;. Similarly, in order to save computation,
the policy may be re-computed only at x¢, rather than at all states = € X, as indicated in Eq. (23).

If the agent has no knowledge of the environment, then it can use the samples received to fit an approximate model,
P(X¢41]X¢, A¢), and then use this model in the computation above. The model, action values, and distributions of
interest can all be updated incrementally from samples. If a batch of samples is gathered first and then we run the
algorithm above, we obtain an approach fairly close to batch model-based reinforcement learning. If on every time
step ¢ we update the model estimate p(Xy1]|X¢, A¢) and immediately use it in the policy computation, we obtain an
algorithm very close to incremental, model-free reinforcement learning.

The “temperature”-like parameter A\ determines how deterministic the resulting policy is. There are different pos-
sibilities for choosing this parameter. In the simplest case, the parameter is fixed to a pre-specified value, for example
dictated by the capacity/memory constraints of a robot. This selects a fixed trade-off between complexity and utility.
More generally, a process known as deterministic annealing [14] can be employed at every time step. It consists of
starting with a large temperature, running the iterative algorithm until convergence, then lowering the temperature by a
factor (the annealing rate) and continuing this process, until the policy is deterministic, always using the current result as
initial conditions for the iterations at the next (lower) temperature. This method obtains, at each time step, the determin-
istic, optimal policy, according to the criterion. The procedure is computationally intensive, but guarantees that actions
are always chosen in a way that maximizes the optimization criterion, given that the annealing rate is sufficiently slow.
Finally, the temperature can be fixed during each time step, but lowered as a function of time, A(¢), until it approaches
zero. This approach is preferable when the agent’s knowledge about the world increases with time, and when there is
no other fixed constraint of the complexity of the desired policy. Methods such as the ones outlined in [20] can be used
to find (a bound on) A(t). Finally, if a complexity constraint is given by the design of the agent, this scheme can be
modified to include a A = lime—s oo A(2).

If the algorithm is implemented using only exact computations (i.e., the most computationally expensive version,
outlined above), it is guaranteed to converge to a locally optimal solution for the proposed optimization criterion. Con-
vergence analysis for the case in which samples are used incrementally is quite tricky and we leave it for future work.

5 Related work

The textbook by Sutton & Barto [23] summarizes several randomization-based exploration approaches used in rein-
forcement learning, such as Boltzmann exploration and e-greedy (in which there is simply a fixed, small probability
of trying out actions which appear sub-optimal). Many heuristic variations have been proposed, in which bonuses are
added to the value function to encourage more efficient exploration (e.g. [25,13])

A different strategy, which yields interesting theoretical results, is that of optimism in the face of uncertainty: if a
state has not been visited sufficiently for the agent to be familiar with it, it is automatically considered good, so the agent
will be driven towards it. This ensures that an agent will explore new areas of the state space. The first sample-complexity
results for reinforcement learning using this idea were provided by Kearns and Singh in [9]. The authors assumed that a
state is “known” if it has been visited a sufficiently large number of times. The RMAX algorithm proposed by Brafman
and Tennenholtz in [5] is a practical implementation of this idea. An extensive theoretical analysis of this approach was
given by Strehl, Li and Litman in [22], showing sample-complexity results both for reinforcement learning methods that
learn a model and ones that learn directly a value function. Those PAC-style bounds are not directly related to our work.

Previous work on curiosity-driven reinforcement learning is centered around the idea that agents are motivated by
an internal reward signal, and in the process of maximizing this reward, they learn a collection of skills. In early work
[15], Schmidhuber proposed different kinds of internal reward signals. More recently, a hierarchical learning approach
was put forth by Singh, Barto & Chentanez in [18]. In this case, both an external and an internal reward signal are
used to learn a behavior policy. At the same time, the extrinsic reward is used to learn multiple temporally extended
behaviors. The particular setting proposed for the intrinsic reward is attempting to provide a novelty bonus. We note
that the intrinsic reward is only used to generate behavior. The paper assumes that there are certain events in the world
that are “salient” and which the agent will be motivated to seek. Oudeyer and colleagues implemented these ideas in
robotics tasks (see e.g. [10] ). More recently, Schmidhuber (in [16] and related works) proposed a novel approach to
creativity and exploration, which is related to information theory, yet different. The relationship to our work deserves
further investigation.



The recent work on differential dynamic programming (e.g. [28,2]) addresses the problem of finding closed-form
solutions to reinforcement learning problems, by reformulating the optimization objective. More specifically, the system
is considered to have a “passive” dynamics (induced by a default policy). The optimization criterion then includes
both the value function and a term that penalizes deviations form this “passive” dynamics (using the KL-divergence
between the state distributions induced by the sought policy and the default policy). This line of work comes from the
perspective of continuous control. The results obtained for the optimal policy look similar to the updates we obtain, but
the motivation behind the approach is very different.

A similarly defined policy update is also obtained by Peters et al. [11], coming from yet another different angle.
They formulate an optimization problem in which the goal is to utilize the existing samples as well as possible. They
formulate a policy search algorithm in which new policies are penalized if they induce a state distribution that is different
from the empirical distribution observed in the past data. The fact that very different points of view lead to syntactically
similar policy updates is intriguing and we plan to study it further in future work.

The idea of using information theory in reinforcement learning has been in some prior work. Ay et al. [1] explore
the maximization of I[X¢, X;y1] for linear models. The main conceptual difference in our work is that we penalize
policies with more memory than is needed for prediction, a notion that is not present in [1]. In [27], Tishby and Polanyi
propose an MDP formulation in which rewards are traded off against information. The authors observe that information
also obeys Bellman-like equations, and use this observation to set up dynamic programming algorithms for solving
such MDPs. While we share the idea of using information, our work is different in a few important aspects. First, the
development in [27] is with respect to a single state distribution, while we account for the state distributions induced
by different policies. Second, in their formulation the information value ends up mixed with the value function. In our
case, information influences the exploration policy, but ultimately, one can still obtain a value function, and a policy,
that reflect only reward optimization. Another important distinction is that in their formulation, deterministic policies are
more “complex” than randomized ones, whereas in our case, a deterministic policy that is constant everywhere would
still be considered “simple”. We anticipate that such a treatment will be important in the generalization of these ideas
to continuous states and actions (where simple policies will share the same choices across large subsets of states). Little
and Sommer (Technical report 2010, unpublished) considered several measures for estimating (or approximating) the
information gain of an action in the context of past data. They found that learning efficiency is strongly dependent on
temporal integration of information gain but less dependent on the particular measure used to quantify information gain.

Our work can be viewed as defining implicitly an intrinsic reward, based on the idea of maximizing how interesting
is the time series experienced by the agent. We note that the intrinsic rewards proposed by Singh, Barto and Chentanez
in [18] also involve the probability of the next state given the current state, under different extended behaviors. However,
this is proposed as a heuristic. The relationship to our results remains to be explored.

6 Conclusion and future work

In this paper, we introduced a new information-theoretic perspective on the problem of optimal exploration in rein-
forcement learning. We focused, for simplicity, on Markovian environments, in which the state of the environment is
observable and does not have to be learned.

We showed that a soft policy similar to Boltzmann exploration optimally trades return and the coding cost (or
complexity) of the policy. By postulating that an agent should, in addition to maximizing the expected return, also
maximize its predictive power, at a fixed policy complexity, we derived a trade-off between exploration and exploitation
that does not rely on randomness in the action policy, and thereby may be more adequate to model exploration than
previous schemes.

This work can be extended easily to Partially Observable Markov Decision Processes, using the framework in [19].
In this case, the additional goal is to build a good, predictive internal representation of the environment. Our theoretical
framework can also be extended to continuous states and actions; very little work has been done so far in this direction
[29] and none using rewards.

A third important direction for future work is empirical: we are currently evaluating the proposed method in com-
parison to existing exploration techniques, and experience in large domains will be especially necessary in the future.
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Appendix
Clever random policy.

There are two world states, z € {0, 1} and a continuous action set, a € [0, 1]. The value of the action sets how strongly
the agent tries to stay in or leave a state, and p(z’|x, a) = a. The interest in reward is switched off (o = 0), so that the
optimal action becomes the one that maximizes only the predictive power.

—Policies that maximize I X¢y1,{Xt, At} = H[X¢41] — H[Xt41| X, A¢).

For brevity of notation, we drop the index ¢ for the current state and action.
I[Xe11,{X, A} = H[X¢ 1] — H[X¢ 41| X, A] @24

The second term in (24) is minimized and equal to zero for all policies that result in deterministic world transitions.
Those are all policies for which 7(a|z) = 0 for all a ¢ {0, 1}. This limits the agent to using only two (the most extreme)
actions: a € {0, 1}. Since we have only two states, policies in this class are determined by two probabilities, for example
the flip probabilities 7(A = 0|X = 1) and 7(4 = 1|X = 0).



The first term in (24) is maximized for p(X¢+1 = 1) = p(X¢+1 = 0) = 1/2. Setting p(X¢+1 = 1) to 1/2 yields

A(A=0[X = )p(X = 1) + 7(A = 1|X = 0)p(X = 0) = % 25)
We assume that p(X = 0) is estimated by the learner. Eqn (25) is true for all values of p(X = 0),if r(A =0|X =1) =
m(A =1|X = 0) = 1/2. We call this the “clever random” policy (7). The agent uses only those actions that make the
world transitions deterministic, and uses them at random, i.e. it explores within the subspace of actions that make the
world deterministic. This policy maximizes I[X; 1, {X, A}], independent of the estimated value of p(X = 0).
However, when stationarity holds, p(X = 0) = p(X = 1) = 1/2, then all policies for which

T(A=0|X =1) = (A =0]X =0) (26)

maximize I[X;41,{X, A}]. Those include “STAY-STAY”, and “FLIP-FLIP”.

—Self consistent policies.

Since o = 0, the term in the exponent of Eqn. (19), for a given state = and action a, is:

p(Xiy1 =)

with Z being the opposite state, and H[a] = —(alog(a) + (1 — a)log(1 — a). Note that H[0] = H[1] = 0.

The clever random policy 7 is self-consistant, because under this policy, for all z, both actions, STAY (a = 0) and
FLIP (a = 1) are equally likely. This is due to the fact that p(X;4+1 = z) = p(X4+1 = ) = 1/2, hence D™%(z,0) =
D™ (x,1), V.

If stationarity holds, p(X = 0) = 1/2, and no policy other than 7, which uses only actions a € {0,1} is self-
consistent. This is because under other policies we also have that p(X;+1 = ) = p(X¢4+1 = Z) = 1/2, and we have
H[0] = H[1] = 0; therefore,

D™ (z,a) := D[P(X¢4+1|X¢ = 2, As = a)||P(Xy+1)] = Hla] + alog {p(Xt“ - i)} +log[p( X1 = )] (27)

D™(2,0) — D™(2,1) = H[A = 0] — H[A = 1] + log[p" (X¢ 11 = a)] — loglp" (Xe1 =2)] =0.  (28)

This means that the algorithm gets to wg after one iteration. We can conclude that 7 is the unique optimal self-
consistant solution.

A reliable and an unreliable state.

There are two possible actions, STAY (s) or FLIP (f), and two world states, = € {0, 1}, distinguished by the transitions:
p(Xiy1 =0|Xt = 0,4 = s) = p(Xeq1 = 1| Xy = 0,4 = f) = 1, while p(X¢41 = 2| Xy = 1,a) = 1/2,Vz,Va. In
other words, state 0 is fully reliable, and state 1 is fully unreliable, in terms of the action effects.

The information is given by

I[ X411, {X, A} = H[Xt41] — H[X¢41|X, A] = —p(Xi41) loga[p(Xi+1)] — p(Xe = 1) (29)

Starting with a fixed value for p(X; = 1) which is estimated from past experiences, this is maximized by p(X¢4+1 =
1) = 1/2. We have p(Xy41 = 0) = 7(A = s|X = 0)p(X = 0) + $p(X = 1). Therefore, p(X;11 = 1) = 1/2 &
m(A = s|X = 0) = 1/2, which implies that asymptotically p(X; = 1) = 1/2, and thus I[X;11,{X, A}] = 1/2.
Asymptotically, p(X; = 0) = p(X¢4+1 = 0), and the information is given by —(p(X = 0)logy[p(X = 0)/(1 — p(X =
0))] + logy[1 — p(X = 0)]) + p(X = 0) — 1. Setting the first derivative, 1 — logy[p(X = 0)/(1 — p(X = 0))], to
zero implies that the extremum lies at p(X = 0) = 2/3, where the information reaches log,(3) — 1/3 ~ 5/4 bits.
Now, p(X¢+1 = 0) = 2/3 implies that 7(A = s|X = 0) = 3/4. Asymptotically, the optimal strategy is to stay
in the reliable state with probability 3/4. We conclude that the agent starts with the random strategy in state 0, i.e.
m(A = s|X = 0) = 1/2, and asymptotically finds the strategy 7(A = s|X = 0) = 3/4. This asymptotic strategy still
allows for exploration, but it results in a more controlled environment than the purely random strategy.
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