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ABSTRACT
We present a computer supported tool for cooperative work
in interdisciplinary fields, which we tested within the area of
astrobiology. Our document classification and visualization
system is fully automated and data driven, based on unsuper-
vised learning algorithms and network visualization tools. A
new feature selection algorithm was created to aid this pro-
cess that indicates which words should be used for mutual
information-based clustering. Our system can extract infor-
mation about collaborations from unstructured databases with
no meta-data and reveals structure that can aid the planning
of collaborative research. We analyzed publications produced
by researchers from NASA’s Astrobiology Institute. We pre-
sented this analysis as a cultural probe and recorded reactions
from researchers that indicated that our method can help sci-
entists from different disciplines to work together. We have
made an interactive version of our visualization and analysis
available as a website for long-term use.

Author Keywords
interdisciplinary science; document analysis; unsupervised
learning; feature selection

ACM Classification Keywords
H.5.3 Group and Organization Interfaces:

General Terms

Algorithms; Measurement

INTRODUCTION
The field of Computer Supported Cooperative Work (CSCW)
can contribute useful tools to interdisciplinary scientific col-
laborations. In practice, however, the use of CSCW as a
bridge to more productive collaborations has been modest and
situational. Challenges involved in making CSCW applicable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CSCW’14, February 15–19, 2014, Baltimore, Maryland, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2540-0/14/02...$15.00.
http://dx.doi.org/10.1145/2531602.2531666

to aiding interdisciplinary cooperation have been identified in
the CSCW literature, which we discuss below.

We present here a computer supported tool, designed for sci-
entists funded by the NASA Astrobiology Institute (NAI),
to facilitate cooperative work in this highly interdisciplinary
field. We have analyzed a corpus of documents published
under the current NAI funding period, looking for common-
alities by means of automated cluster analysis. This allowed
us to identify clusters of related documents, to extract top-
ics that characterize these clusters, and to evaluate how these
relate to the Science Objectives listed in the NAI planning
guidelines [?].

The cluster analysis furthermore reveals a meta-structure,
which we visualized using a force-directed graph. This visu-
alization provides an opportunity for scientists to look at the
large body of unstructured document data in a structured way,
and thereby identify how their work fits into the entire body
of work produced under NAI funding. One explicit goal of
the funding agency is to “carry out, support and catalyze col-
laborative, interdisciplinary research”. Our data analysis and
visualization tool allows for a time efficient way of assessing
where cooperation between teams and/or interdisciplinary re-
search occurs within the funded work. Thus, it may be useful
in helping to plan in which areas new collaborations could be
pursued. Furthermore, the visualization aids both scientists
and the funding agency in identifying potentially relevant ar-
eas that are not yet being actively addressed within the funded
body of work.

CSCW and Interdisciplinarity
There is a long history of CSCW research in the domain
of interdisciplinary science collaborations [?, ?, ?]. Dis-
tributed interdisciplinary collaborations have been studied
from a CSCW perspective at several levels of analysis, in-
cluding organizational forms [?], interfaces [?], and human
infrastructure [?].

One study conducted retrospective interviews of principal in-
vestigators (PIs) and Co-PIs of distributed interdisciplinary
teams [?]. Those teams explicitly stated dissemination and
integration across fields as their goals. Integration was de-
fined as “the extent to which a research team combines its dis-
tinct expertise and work into a unified whole” [?]. Integrated
teams required both administrative support and internal com-



mitment, and the authors call for CSCW tools that create op-
portunities for cross-team discussion and feedback [?].

Within an interdisciplinary collaboration, individual re-
searchers will use tools that work for them, and are less likely
to use groupware or similar common tools [?]. However, sci-
entific research at the boundary between disciplines can result
in the negotiation of new roles [?] and lead to the creation of
boundary objects [?], artifacts across which diverse collabo-
rators can communicate and negotiate shared meaning.

Cultural probes [?], defined as “designed objects, physi-
cal packets containing open-ended, provocative, and oblique
tasks to support early participant engagement with the design
process” [?], are artifacts designed to engage a group or com-
munity and elicit interactions. Introducing cultural probes
can generate both boundary objects [?] and more lightweight,
transient, boundary-negotiating objects [?], which in turn, can
elicit cross-boundary communication [?].

The results of our analysis were presented to scientists as a
cultural probe and they remain available to them as an in-
teractive tool on our website. This work is part of the on-
going development of the Astrobiology Integrative Research
Framework (AIRFrame) [?], a system [?, ?, ?, ?] funded by
the NASA Astrobiology Institute (NAI) that uses document
analysis techniques to allow astrobiology researchers from di-
verse fields to identify the subset of publications relevant to
their work, but which may have appeared in journals special-
ized for a different audience, as well as relevant concepts and
researchers from outside their discipline. The goal of AIR-
Frame is to foster understanding across areas, and thereby
catalyze interdisciplinary collaboration.

Astrobiology and the NAI
The field of astrobiology is concerned with questions of life
in the universe. Researchers in areas as diverse as astronomy,
geology, biology, chemistry, and oceanography address ques-
tions about habitable environments, prebiotic chemistry, wa-
ter in the universe, extremophiles, and the physical limits of
life, to name a few examples. Understanding more about the
evolution and distribution of life may also help to understand
more about the future of life on Earth.

NASA is the main funding agency for astrobiology. The
NASA Astrobiology Institute (NAI) is a virtual, distributed
research organization consisting of 14 teams across the US
and approximately 840 researchers, hospitable for CSCW.
Researchers work both in their areas of expertise and on in-
terdisciplinary research projects. NAI teams share science
results internally and with other teams in weekly meetings;
principal investigators at each site have monthly meetings to
share results; and each team is responsible for producing an
annual report of its publications, presentations, outreach, and
other activities. Critically, both publications and annual re-
ports are the primary means by which researchers and teams
are evaluated.

The NAI requires researchers to articulate in what way their
work is interdisciplinary. However, little or no support struc-
ture is in place for researchers to find potential interdisci-
plinary collaborations or to assess how their work fits into the

body of research being conducted. The AIRFrame system
addresses these issues. AIRFrame analysis results are shared
with researchers in team meetings and seminars to elicit feed-
back as input to iterative development [?].

CSCW for the NAI
A crucial challenge in providing CSCW tools to scientists
is that they naturally have a preference for more traditional
means of communication. However, established methods of
transmitting scientific information such as journal publica-
tions can be used to create tangible tools and assessment
instruments [?, ?, ?]. Scientists can employ these tools to
identify areas of potentially productive crossover in large dis-
tributed collaborations, and to provide evidence of their inter-
disciplinary impact.

We chose to analyze the articles produced by the NAI teams
without causing disruption to ongoing research. Instead of us-
ing expert help to construct a structured database that fit into
a given set of criteria, we use unsupervised machine learn-
ing algorithms to extract interpretable structure directly from
document texts by means of cluster analysis. We visualize the
results of the cluster analysis to further aid ease of interpreta-
tion. This automatization is useful as it saves valuable expert
time. Not imposing pre-conceived criteria may also be useful,
as that allows for the possibility of discovering, for example,
which Science Objectives appear together in document clus-
ters, revealing the extent to which the clusters correspond to
stated NAI funding guidelines.

The collected documents are publications reported by the 14
NAI-funded research teams in three years of annual reports.
Some of these were available to us as full text, for others
we only had access to abstracts. NAI does not have a struc-
tured citation database, hence no bibliographic metadata was
used in the automated analysis. We used unsupervised learn-
ing (cluster analysis) based on the distributions of words over
documents, as estimated from the data. In the Methods Sec-
tion, we detail data collection, discuss the challenges that
have to be overcome to perform meaningful cluster analysis
of document data, and discuss how we addressed them us-
ing existing algorithms. We saw fit to develop a new prepro-
cessing method which provides an automated indication of
how many words should be used in the analysis. This method
has not been published elsewhere and is also described in the
Methods Section.

Results of the cluster analysis are discussed in the Results
Section, together with their visualization and the resulting
meta-structure that was observed. These were presented to
the University of Hawaii NAI team. Both the automated doc-
ument analysis and the visualization of the results met with
great success, and were deemed useful by the team. We have
created a website to allow continued and more detailed ac-
cess to these results. We report on the presentation of our
work and reactions of our audience in the Presentation and
User Reaction Section.



METHODS

Astrobiology Document Dataset
Often, only the abstract text is used in cluster analysis, but
prior research with the Textpresso semantic search engine [?]
suggests that abstracts of scientific journal articles are not
enough to discover important connections among documents.
Abstracts are rich with keywords, but they traditionally do
not include more subtle evidence of linkage such as common
research methods, equipment, and shared references.

We manually collected 1,346 publications, compiled from the
2009, 2010, and 2011 NAI annual reports. We attempted to
retrieve the full text of all articles but if it was unavailable
the article abstract was used. This resulted in a corpus of
724 long multi-page articles including references, 106 long
abstracts or short articles with references, 484 short abstracts,
and 32 very short database posting records or citations. Of
these, 832 were in pdf format, the rest were retrieved as plain
text. Pdf documents were converted to plain text using the
Unix utility pdftotext.

The NASA Astrobiology Roadmap document [?] is the plan-
ning guide for the NAI research represented in the dataset.
It outlines 18 high-priority Science Objectives ranging from
strict astronomy topics (e.g., Indirect and direct astronomical
observations of extrasolar planets) to interdisciplinary topics
(e.g., Biosignatures to be sought in Solar System materials)
to strongly biological themes (e.g., Co-evolution of microbial
communities). This document was included in the document
data set and was used to analyze and evaluate the output of
cluster analysis (detailed in the Results Section).

Cluster Analysis
By grouping the documents into a number of different clus-
ters we wish to extract useful structure from this diverse and
unstructured collection for which manual analysis by an ex-
pert is too time consuming. We are particularly interested in
the topics that emerge within clusters when as few assump-
tions as possible are made about the data.

Clustering can be viewed as a form of summarizing data in
a meaningful way and a large number of different clustering
methods have been developed, e.g., [?, ?, ?, ?]. There are a
few serious challenges involved in cluster analysis [?]. Deter-
mining what level of detail should be used in the summary, or
equivalently choosing the appropriate number of clusters, is
considered the hardest problem in clustering [?]. Choosing
an appropriate clustering criterion such that similar objects
end up in one cluster is another fundamental issue, involving
both selection of a measure of similarity and identification of
relevant features in the data [?, ?].

Many popular text clustering methods are based on text mod-
eling algorithms developed within the area of Information Re-
trieval for querying large databases [?, ?, ?, ?]. These meth-
ods, such as Latent Dirichlet Allocation (LDA) [?] and Latent
Semantic Analysis (LSA) [?], use statistical modeling meth-
ods to reduce document representation from a vector of word
counts to a more compact vector of model features. A sim-
ple similarity measure, such as the cosine distance or average

linking, is then used to group the reduced vectors into clus-
ters [?, ?, ?]. LSA identifies a linear subspace in a matrix
of document-word vectors which captures variance between
the documents [?, ?]. LDA is a probabilistic expansion of
LSA where latent multinomial variables (referred to as topics
in this literature) are modeled as discrete distributions over
words, while documents are modeled as discrete distributions
over ”topics“.

Statistical document models require assumptions be made
about the structure of the data and what part of it is relevant
for clustering. For example, with LDA one must use ad hoc
methods to estimate the parameters which fix the shape of the
assumed prior distributions of words over topics and topics
over documents. Additionally, the number of topics must be
estimated. Model-based, parametric clustering methods have
the drawback that incorrect assumptions or poor selection of
parameters can lead to poor performance or skew results to-
ward finding certain types of clusters [?, ?, ?].

Alternatively, one can define a notion of relevance directly,
using information theory [?]. This results in a framework, the
Information Bottleneck (IB) method, within which a cluster-
ing algorithm and a notion of similarity can be derived math-
ematically [?], rather than needing ad hoc specification.

Applied to document clustering, the IB method can be in-
terpreted as lossy compression of documents into clusters in
such a way that the information about the words is maximally
retained. Thus, the words are defined as the relevant vari-
able, W . The mutual information between clusters, C, and
documents, D, I[C;D] is minimized, while the mutual infor-
mation between clusters and words, I[C;W ], is maximized.
The parameter β controls a trade-off between the amount of
compression and keeping relevant information, that is, infor-
mation about words.

min
p(c|d)

(I[C;D]− βI[C;W ]) (1)

Minimizing this equation yields the optimal cluster assign-
ments, p(c|d), the probability of cluster c given document d.

Even prior to the development of the Information Bottleneck
framework, information theoretic methods were shown to be
preferrable to parametric methods in data analysis for science
studies [?]. For more than ten years, the IB framework and
related methods, have been viewed as the state of the art for
clustering highly multidimensional data, such as text [?]. It is
difficult to compare outcomes of different clustering methods
because of diverse definitions of relevance and similarity, and
the relatively ambiguous meaning of correctness in grouping
unlabeled data. However, tests using labeled benchmark doc-
ument datasets have shown that IB-based methods produce
as good or better clustering precision with regard to the la-
beling than parametric models such as LDA [?, ?]. Addition-
ally, with the IB framework, perturbation theory allows one
to work out the difficult problem of how many clusters can be
used maximally without over-fitting the data [?].



Document Preprocessing
Before documents can be clustered, preprocessing must be
done to extract valid text and format it for input into the clus-
tering algorithm. Most commonly, each document is initially
represented as a single feature vector whose dimensions or
features are normalized word counts [?, ?, ?, ?]. Removing
or combining words to reduce the dimensionality of the fea-
ture space while maintaining the most important elements is
known as feature selection. Important elements are those fea-
tures which define subsets in the data relevant to the intended
goal of a particular clustering project [?, ?, ?].

In different clustering methods, feature selection may be an
integral part of the clustering process or it can be just another
step in the preprocessing before clustering occurs. With text
modeling, such as LDA, most of the processing to differenti-
ate between clusters is done within the feature selection step
itself and it is considered part of the clustering process. With
other methods, such as the IB, a complex clustering algorithm
performs most of the work to fit the data into clusters and fea-
ture selection is part of preprocessing, used only to eliminate
extraneous elements.

The System for the Mechanical Analysis and Retrieval of
Text (SMART) project worked to evaluate and develop fea-
ture selection methods for more than 30 years [?]. We employ
two of those methods which remain standard practice [?]:
stop word removal which removes a list of extremely com-
mon function words; and stemming which removes the end-
ings of words, transforming related words into identical word
stems.

For all of the documents, a standard list of stop words were
removed and all remaining words were stemmed using the
Porter Stemming Algorithm [?]. We then applied our new
feature selection method to determine which and how many
of those words to keep for clustering.

New Feature Selection Method
A feature selection method particularly popular and method-
ologically consistent in IB-based clustering is to build a list
of words, w, ranked by I[w], their individual contribution to
the mutual information between all words and documents in
the data, I[W ;D], as in Equations 2 and 3 [?, ?, ?].

I[w] =
∑
d∈D

p(w|d)p(d) log2
(
p(w|d)
p(w)

)
(2)

I[W ;D] =
∑
w∈W

I[w]. (3)

Where p(w|d) is the probability of word w given document
d, p(w) is the probability of w over the whole dataset, and
p(d) = 1

ND
is the probability of a particular document, with

ND being the number of documents .

However, with this method, the number of words to keep is
not indicated, a cutoff threshold must be decided upon. We
developed a new method, introduced here, to address this is-
sue.

Algorithm 1 Greedy Corrected I [W ;D] Word Ranker
for all words w in the data do

Calculate and save I [w], Equation 2.
end for
while all words not ranked do

for all not yet ranked words, w do
Calculate C[w] from Equation 4.
Calculate corrected information contribution:
Icorr [w]=I [w]−C[w].
Keep track of the maximum Icorr [w].

end for
Add word with largest Icorr [w] to ranked list
Add NDw for that word to NDr

Add Nw of that word to Nr

Add Icorr [w] to Isum
end while
return The ranked word list.

Based on ideas taken from [?, ?, ?, ?], our new method for
choosing words attempts to correct the error made when esti-
mating information from finite samples. The idea is to retain
only those words that give an increase to the corrected mu-
tual information between words and documents. Words that
do not increase this value are seen as adding noise to the data
due to finite sampling effects.

A greedy algorithm is used due to the combinatorial nature of
the problem. Complete pseudo-code is given in Algorithm 1
and Equation 4, where NWr is the number of ranked words,
NDr is the number of documents containing any ranked word
(a document is only counted once, the first time any word it
contains is ranked), Nr is the total number of occurrences of
all ranked words in the data,Nw is the number of occurrences
of a single word w in the data, and NDw is number of docu-
ments a word w occurs in not already counted in NDr.

C[w] =
(NDr +NDw − 1) ∗NWr

2 log (2) (Nr +Nw)
(4)

The correction term changes as each word is added to the
ranked list. Therefore, it must be recomputed for each as-
yet unranked word in each round of ranking. In each round,
the word with the largest corrected contribution, Icorr [w], is
added to the ranked list. After all are ranked, all words that
increase Isum, the cumulative Icorr [w], are retained for clus-
tering.

For this dataset, the cumulative per-word contributions of the
top-ranking 10,000 words out of a total of 48,421 are shown
in Figure 1. Our method indicated 1,943 words to be kept as
can be seen by the red square at the maximum of the inset
in the figure. Those words were then used for all clustering
procedures.

Visualization of Cluster Analysis Results
The use of node-link plots in association with text cluster-
ing to visualize structure in scientific research has a long his-
tory [?, ?, ?, ?]. Commonly, metadata or modeled text are
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Figure 1. Cumulative corrected per-word contribution to mutual in-
formation between documents and words. 10,000 highest contributing
words. Words ranked by largest to smallest contribution. Inset shows
the section within the red box of the larger plot, highlighting the point
at 1,943 words after which contributions become negative. All words
giving a positive contribution were kept for clustering.

represented on a network graph framework, graph clustering
algorithms are used to simplify and group the representation,
and layout algorithms are employed to spatially manipulate
the graph for easier visual comprehension [?, ?, ?, ?].

In our method, we use the IB to cluster mixed-length doc-
uments into several different numbers of clusters. Then, we
use the Gephi graph visualization program [?] to visualize the
combined multiple clustering results on one force-directed
node-link plot. The graph layout was done using Gephi’s
Force Atlas algorithm and Gephi’s partition functionality was
used to color the document nodes. All other data analysis and
processing was done outside of Gephi.

An exponentially large number of edges would have resulted
if we had represented each cluster as a fully connected sub-
plot, where all document nodes in a cluster are connected to
each other by an edge, as is common. Inspired by network
topology for large-scale networks, we reduced the number of
edges by representing the clusters as star networks with each
document represented by a small node connected to a central
cluster node, often referred to as a hub [?]. Each cluster node
is sized by the number of documents assigned to that cluster,
and each document node has an edge connecting it to the clus-
ter it was assigned to. This is visualized simultaneously for
several clustering results with different numbers of clusters.

Our method of reducing edges is related to graph reduction
techniques such as node and edge aggregation into meta-
nodes or aggregating edges into a single meta-edge [?, ?], but
different in that we aggregate edges into the hub. The original
document nodes are retained and are connected to each other
through the hub. This allows us to preserve both the over-
all structure of the entire dataset and the ability to visualize
properties of individual document nodes, such as coloring by
discipline.
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Figure 2. Breakdown of astrobiology document dataset by discipline.
The multidisciplinary category includes articles in journals such as Sci-
ence, Nature and PNAS. The interdisciplinary category contains articles
in journals which specifically state that they publish interdisciplinary
studies, such as The Journal of Cosmology.

RESULTS OF CLUSTER ANALYSIS
For a given number of clusters, k, the IB clustering algo-
rithm returns a representation of each cluster, which is a list of
words sorted by their probability of occurring in that cluster.
The algorithm also returns a list of assignments of documents
to each cluster.

We looked at the 50 most probable words in each cluster and
inspected the documents assigned to each. The documents
are listed by projects in the annual reports to the NAI, those
projects include a subset of Science Objectives from the As-
trobiology Roadmap. From this, we obtained both projects
and related Science Objectives for each document. We iden-
tified the most prominent Science Objectives in each cluster.
This evaluation allowed us to identify topics that appeared in
each cluster.

We hand-labeled the documents with 22 disciplines listed on
their publishers’ websites, the distribution of these is shown
in Figure 2. Over half of the documents appeared in Astron-
omy/Astrophysics (AAP) or Earth and Planetary Sciences
(EPS) journals and conferences. Approximately 8% were
published in multidisciplinary journals such as Science and
Nature, while the rest come from 19 disciplines that each
make up 6% or less of the total. The “Other” category in
contains the least represented disciplines: Marine Science,
Chemical Physics, Aerospace/Astronautics, Physics, Meteo-
rology/Climate, and Information Science. Discipline labels
were used only in our evaluation and visualization, not as in-
put to the clustering algorithm.

We examined the best cluster analysis results and chose to
evaluate k = 8, 12, and 16 clusters in detail to show a pro-
gression in relationships amongst the documents at different
levels of compression. Less than 8 clusters compressed the
data too much. Clusters were very large and detailed topics
were not present. More than 16 clusters resulted in very small
clusters with few documents in them. These were no longer
a useful summary of the data. Within the chosen range of 8,
12, and 16 clusters, the differences between clustering results
were enough to discern obvious changes in the cluster mem-
berships without adding too much complexity for evaluation.

In our results, most clusters are a mix of long full-text doc-
uments and shorter abstracts all related to the same topic.



However, some small clusters containing only abstracts were
made. These indicate a limitation of clustering short docu-
ments. Despite having similiar topics, the sparsity of words
in some shorter abstracts make their representations very dif-
ferent from longer documents with much richer word content,
so much so, that they can be forced into separate clusters.

In the following sections, clusters are identified with a
number-letter combination, such as 8a, where the number in-
dicates k, the number of clusters made, and the letter is an
arbitrary name for the cluster. Cluster topics are listed in ital-
ics following the cluster identifier.

Eight Clusters
Classifying the dataset into 8 clusters results in 6 with topics
directly related to combinations of Science Objectives. Three
clusters contain documents from very mixed disciplines, with
no single discipline making up more than 30% of the total: 8a
- beginning of life and biosignatures; 8c - prebiotic materials
in ice and water; and 8d - genetics and biomolecules. Two
clusters contain a mix of primarily AAP and EPS documents:
8f - detecting planetary habitability and 8h - planet forma-
tion and planetary qualities. Cluster 8b - observations and
properties of stars and planetary systems contains only AAP
documents.

Cluster 8g - methods of research, equipment and instruments,
field expeditions, and planning for future missions is about
methods and planning, rather than NAI Science Objectives.
This cluster contains mixed disciplines with 46% of them
from EPS. Predictably, it includes the Astrobiology Roadmap
document. The smallest cluster, 8e - observations of extraso-
lar planets is a collection of AAP abstracts from a single NAI
team.

Twelve Clusters
Seven of the 12 clusters contain topics closely related to Sci-
ence Objectives, quite similar to clusters 8a-c, 8f, and 8h, but
split slightly more along disciplinary lines. Out of those 7
only 2 contain very mixed disciplines (no individual disci-
pline makes up more than 30% of the total): 12j - origins of
organic matter, early Earth ecosystems, microbes, and biosig-
natures and 12l - microbes, RNA, and biomolecules. EPS doc-
uments make up more than 30% of clusters 12g - habitable
planet environments, early Earth and Mars; 12h - planet, as-
teroid, and meteorite surface features; and 12k - microbial
fossils and evolution of minerals. AAP makes up slightly
more than 30% of cluster 12a - ice chemistry, icy worlds, pre-
biotic materials, and chemical complexity and more than 90%
of cluster 12c - stars, planetary systems and exoplanet detec-
tion.

Both 12b - general discussions of astrobiology, exploration
missions, and planning and 12i - environment and instrument
testing are directly related to cluster 8g. 12b is a cluster of
general topics including the Astrobiology Roadmap, while
12i contains only 32 EPS abstracts.

Additionally, there are 2 small clusters of under 40 abstracts
each which have the same topic: extrasolar and habitable
planets, 12d, which is all AAP articles, and 12f with mixed

disciplines. Finally, there is a large cluster containing mostly
EPS documents, 12e - MESSENGER mission to Mercury.
Interestingly, the MESSENGER mission to Mercury is not
listed in the Astrobiology Roadmap.

Sixteen Clusters
When 16 clusters are used, the topics of 6 do not change sig-
nificantly from 12 clusters. Listing their identities: 12a - 16f;
12e - 16e; 12h - 16i; 12j - 16g; 12k - 16c; 12g - 16o. We now
discuss the remaining 10.

There is more than one biology-based cluster: 16d - evolu-
tion, genetics and RNA which contains the Roadmap docu-
ment and 16p - microbes, bacteria and extremophiles. The
previously discussed AAP clusters, 8a and 12c, split into
16n - stars, planetary systems and observations of extraso-
lar planets and 16h - planet formation and planet qualities.
Documents contained in clusters 12b and 12i recombine and
split into 3 mixed-discipline clusters: 16l - instruments, anal-
ysis methods, analog environments, and field studies; 16m -
Earth as model for habitable extrasolar planets; and an all
abstract cluster, 16k - bio-signatures in meteorite materials
and asteroids.

Three small clusters of abstracts each contain less than 30
documents: 16j - extrasolar planet detection; and 16a and 16b
which are too small, containing only very short documents,
such that we could not identify meaningful topics. This is an
indication that using more than 16 clusters would result in a
summary that contains meaningless detail.

Visualization
To visualize the meta-structure resulting from cluster evalua-
tion over different numbers of clusters, we plotted all cluster-
ing results in one graph, with node size based on degree and
document nodes colored by discipline (Figure 3).

The layout was made using the Force Atlas algorithm pro-
vided with Gephi [?]. This algorithm causes all nodes to
repel each other with a force based on size while edges
draw connected nodes together. Therefore, document nodes
were drawn toward the hubs representing their assigned clus-
ters. The plot expanded along directions where there are
less connecting edges (documents and cluster topics are less
closely related) and contracted towards areas with similar top-
ics where many connections occur. The resulting structure
reveals cluster topic relatedness; how different disciplines
are spread over the result space; and how documents are re-
assigned when the number of clusters is changed.

The graph shows that there is no clear hierarchical structure.
Clusters do not split up evenly when going from 8 to 16 clus-
ters. Instead, re-assignments are complex as indicated by the
large number of isolated documents in the graph. Some docu-
ments, however, do stay together and we discuss this behavior
in detail later in this section. We now discuss the highlighted
areas in Figure 3.

The area inside the dashed line marked with I in Figure 3,
contains clusters with star and exoplanet detection topics
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Figure 3. Force directed plot of clusters and documents for k = 8, 12, and 16 clusters, showing clumping behavior and distribution of disciplines. Cluster
hubs, colored gray or black, are labeled with k plus a letter to aid evaluation. Document nodes are colored by discipline as indicated. Areas within
dashed lines are approximate locations of topics discussed in the text. The dark pink star node is the NASA Astrobiology Roadmap document, its
assigned clusters are outlined in the same pink.

and their associated documents. These are almost exclu-
sively AAP publications as indicated by the majority of pur-
ple nodes. When assigned to different numbers of clusters,
documents either stay together, such as in cluster 12c, or they
split up into subtopics, such as in 16h and 16n. This is the
most prominent place in the graph where an almost hierarchi-
cal structure can be found. Many documents in area I never
cluster with other documents outside of this area. They re-
main very close together because there are few edges to pull
them away. This causes the area to be somewhat segregated
from the rest of the graph.

Within area II we find a predominantly green group of doc-
ument nodes, which are the EPS documents related to the
MESSENGER Mercury mission that make up cluster 12e. A
large portion of those documents is also assigned to cluster
8h, together with large groups of AAP documents found in
area I. Therefore, there are short paths connecting documents
in these two groups pulling the document nodes and their re-
lated clusters closer together, giving a visual clue about the
bi-disciplinary content of cluster 8h.

Area III contains an heterogeneous selection of disciplines
(indicated by document node colors), but most of the doc-
uments share similar topics, namely the study of prebiotic
materials (particularly ice and water) in lab experiments, on
Earth, in the Solar System, and outside the Solar System.

Inside area IV are many dark purple biology, magenta mi-
crobiology, and brown geology document nodes. These
are the documents clustered into genetics, microbes, and
biomolecule-related topics. The large group of documents
near the cluster 16d node stay together when different num-
bers of clusters are used. They are also assigned to clusters
12l and 8d.

Clusters with topics related to biosignatures and the begin-
ning of life are located in area V with cluster nodes 8a, 12g,
12j, and 16g. These are multidisciplinary, indicated by the
amount of differently colored document nodes. They are also
not as separated from the bulk of the data as the biology-based
clusters (in area IV) due to the fairly large amount of connec-
tions they share with the ice-related work contained in area
III, and the more loosely connected documents related to mis-
sion planning, analog environments, and instrument testing
located near the center of the plot and cluster 8g.

The NASA Astrobiology Roadmap document contains de-
scriptions of all of the 18 Science Objectives. It is by defi-
nition a summary of the intended outcomes of research pro-
duced by the NAI Teams. In Figure 3, the Roadmap’s location
is marked by a node shaped as a pink star with a thick black
border. The clusters it was assigned to, 8g, 12b, and 16d, are
highlighted by pink borders. This document is located close
to the center of the plot, as should be expected, and the clus-
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Figure 4. Detail from area V from Figure 3 showing how documents
always assigned together to the same clusters form clumps of nodes. As
explained in the text, the documents contained in clumps marked ”A“
and ”B“ are all assigned to clusters 8a and 16g, but are split at k=12
into 12g and 12j. Document nodes colored by discipline as in previous
figures.

ters it was assigned to do not consistently represent the same
topic or the same disciplines. This illustrates an advantage
of looking at more than one clustering solution on the plot.
Examining only one solution would make it appear that a sin-
gle cluster topic (where the Roadmap is assigned) represents
the research guidelines much more strongly than any of the
others.

Plotting multiple clustering solutions also reveals how some
document nodes are always assigned together to the same
cluster, for all values of k considered. These documents form
clumps in the force directed plot. However, one clump of
document nodes rarely makes up an entire cluster itself and
examination of these clumps reveals further insights into the
data.

As an example, we focus on area V from Figure 3. A detail is
provided in Figure 4, with two clumps of documents labeled
A and B. In-depth examination of all documents within A and
B, respectively, including texts, authors, and citations, reveals
a high degree of relatedness within each clump.

The 84 documents in A are predominantly geochemistry
(light blue), multidisciplinary (orange), and geology (dark
brown). Most of these articles originate from projects tagged
with Science Objectives pertaining to the early Earth and the
search for biosignatures in materials of extraterrestrial origin
(such as meteorite samples.) All clusters that the documents
in A were assigned to have topics related to the beginning of
life and biosignatures.

The 26 documents in B contain a larger percentage of EPS
articles (green). The majority of these articles come from
projects tagged with Mars exploration and general planetary
habitability-related Science Objectives.

Interestingly, the documents in B cluster together with those
in A in both 8a and 16g, but they separate into clusters 12g
and 12j at the intermediate compression level of 12 clusters.

The authorship and citations within both clumps are very
tightly coupled. We find that active collaborations between
many authors and connections via direct citation are present.
Some authors are represented in both A and B. These authors
have done work on the formation of both the Earth and Mars.
Their papers about Earth are in A, and their papers about
Mars are in B. Several of the Mars papers by these authors
are cross-institutional collaborations with other authors also
represented in B.

From this examination it can be seen that our method ex-
tracts a large amount of relevant detail from the unstructured
database we had at hand. Documents that cluster together
share similar topics and some share authorship and citations.
Documents that clump together over a range of k, are indica-
tive of active collaboration and citation amongst the authors,
thus providing, for example, an excellent starting point for
CSCW researchers looking for existing collaborations in an
unstructured database.

PRESENTATION AND USER REACTION
Our analysis results were presented to 17 NAI researchers
from the University of Hawaii (roughly 2

3 of the entire Uni-
versity of Hawaii Team), during a planning session. The pri-
mary goals of the session were to examine (i) the team’s col-
laborative efforts and research output, and (ii) how both could
be compared with other NAI teams. The visualizations gener-
ated in the present study served as cultural probes during the
session, providing researchers in diverse areas a data-driven
representation of the larger context of their work and a basis
to explore potential connections across disciplines. We noted
4 main reactions:

1. The scientists thought that the model-free nature of the
clustering process, which included no preconceptions
about the disciplinary membership of any paper, was ap-
propriate to the nature of astrobiology research. It con-
tributed to the perceived objectivity and trustworthiness of
the results.

2. The Hawaii team thought that their primary distinguish-
ing strengths were in the areas of astronomy and earth
and planetary sciences. However, the visualization sug-
gested that those strengths are relatively common across
NAI. One of the strongest interdisciplinary clusters, and
one of the rarest across NAI, is in ice chemistry and re-
lated areas (seen in area III of Figure 3). The researchers
had not been aware of this and realized this was an area
of strength unique to Hawaii that should be emphasized
in forthcoming reports to NASA. This led to a discussion
about whether a physical chemist specializing in ice chem-
istry might have a productive collaboration with an as-
tronomer specializing in comets. Those researchers and
several others used the visualization to form themselves
into breakout groups, map out the next steps of their re-
search, and discuss areas of potential crossover.

3. The researchers were not surprised to see documents in
the biological sciences cluster together, somewhat removed
from those in astrobiology’s other constituent fields. They



discussed the relative benefit of having some teams spe-
cialize in biological aspects of astrobiology as opposed to
trying to force interdisciplinary connections in every area.
They argued that the Hawaii team’s focus on water, a pre-
cursor and substrate for life, might help bridge biological
and physical sciences.

4. The scientists expressed interest in examining documents
from outside their home discipline that consistently clus-
tered within their own areas, suggesting that this clustering
process might also be used as an interdisciplinary docu-
ment discovery and recommendation system.

As a result of the feedback from the NAI scientists, we have
built a website with a fully interactive version of our anal-
ysis visualization. This is located at: http://airframe.
ics.hawaii.edu/visualizations/. The site allows a much
richer experience with our data and analysis than is possible
to represent here. The entire graph, similar to Figure 3, can be
zoomed and panned. Mousing-over nodes pops up document
bibliographic information or cluster topic. Clicking a node
highlights related clusters and documents, hiding all others.
Users can choose to see different numbers of clusters, from
2 - 16, or combinations of those. They may also choose to
color the document nodes by discipline or by NAI team. We
anticipate that the site will be useful not only for astrobiol-
ogy researchers, but for NASA administrators and interested
members of the public as well.

CONCLUSION AND OUTLOOK
Interdisciplinary research is, by definition, open to contribu-
tions from diverse fields, and it is useful to have a mecha-
nism for information to migrate across domains. In this paper
we used computer supported methods, powered by unsuper-
vised learning (clustering) and network visualization, to aid
cooperative work by helping interdisciplinary scientists work
together.

We have created a document classification and analysis tool
to aid interdisciplinary research in the field of astrobiology.
To that end we created a new algorithm for document prepro-
cessing, resulting in an indication of how many words to use
for the mutual-information based clustering method we ap-
plied. We have presented the resulting document analysis to
scientists at a planning session, as a cultural probe, and have
recorded their reactions. We have created a website providing
a web-based version of our analysis to allow for its continued
use.

Our classification and visualization method is automated and
uses unsupervised machine learning (clustering) methods that
make minimal assumptions about the structure of the data. It
thus saves valuable expert time.

Analysis of the astrobiology documents shows that our
method reveals useful structure in an unstructured database
without bibiographic meta-data. We were able to identify:
(i) which documents are topically related, (ii) how a given
document fits into the entire body of work, and (iii) where
collaborations take place. This is useful as it provides a time
efficient visual guidance that can help researchers to identify
both publications and other researchers that are relevant to

their own interests. It can thus aid in strengthening existing
collaborations and the formation of new ones. It can also aid
in guiding searches and in building reading lists.

Most importantly, our method met with success when it was
presented to a subset of astrobiology researchers. Our docu-
ment analysis contained some expected results, but also con-
tributed new insights. It elicited interest and discussions. This
demonstrates that our document clustering and visualization
method can be a valuable collaborative tool.

The utility of our method should become even more obvious
in application areas in which the number of publications is
much larger than what we analyzed here. The size of our
database (< 103 documents) implies that probably most PI’s
are aware of a large fraction of most of the published arti-
cles. However, in areas where there are one or even two or-
ders of magnitude more documents, our automated and sys-
tematic approach may provide a valuable starting point to
guide search and discovery of connections between docu-
ments, thereby saving time and making an otherwise infea-
sible task more tractable. Computing speed limitations are
being addressed in active research by others [?] and should
be less of an issue in the future.
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