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ABSTRACT

Shannon’s rate-distortion curve characterizes optimal lossy
compression. I show here that the optimization principle
that has to be solved to compute the rate-distortion func-
tion can be derived from a least effort principle: minimiz-
ing required thermodynamic effort necessitates the mini-
mization of information (compatible with a given fidelity).
Retaining less information costs less physical effort. In
that sense, lossy compression is energy efficient, in other
words, lossy is lazy.

1. INTRODUCTION

Rate distortion theory [1, 2, 3, 4] underlies much prac-
tical work in signal processing. It quantifies the rate at
which data can be transmitted, given a tolerable level of
fidelity. Shannon considered [1] “the set of messages of
a long duration, say T seconds. The source is described
by giving the probability density, in the associated space,
that the source will select the message in question [p(x)].
A given communication system is described (from the ex-
ternal point of view) by giving the conditional probability
[p(y|x)] that if the message x is produced by the source
the recovered message at the receiving point will be y.”

Input messages, or input data, x, are then compressed
into a representation, y, such that a certain desired level
of fidelity is achieved, rather than perfect reconstruction.
In other words, information is lost. In this process, some
average distortion, D[X,Y ] := 〈d(x, y)〉p(x,y) is encoun-
tered. The most efficient encoding compatible with a given
quality of reproduction minimizes the mutual information1

I[X,Y ] :=
〈

ln
[

p(x,y)
p(x)p(y)

]〉
p(x,y)

under the constraint of

fixed average distortion, D.
Shannon thus defined the rate,R(D), of generating in-

formation compatible with a given distortion as the mini-
mum of the mutual information under this constraint: 2

R(D) := min
p(y|x)

I[X,Y ] (1)

s.t. D[X,Y ] = D.

1For simplicity, we measure information in units of the natural log-
arithm (nats). The shorthand 〈·〉p denotes the average taken over the
distribution p.

2Notation uses the convention in [4]: capital letters X and Y de-
note random variables. For visual clarity, all optimization problems ap-
pear without the constraints that ensure normalization and positivity of
p(y|x).

The minimum is taken over all possible communication
systems, i.e. probabilistic assignments p(y|x). The opti-
mal rate is achievable, and algorithms exist for computing
the rate-distortion function [3, 4].

This problem has a simple physical motivation, which
I will now develop.

2. EFFORT OF CODING

Output messages are distributed according to p(y).3 How-
ever, when a specific input message, x, is given, then the
corresponding code messages are distributed according to
p(y|x). Imagine a physical system which is changed from
a state described by the distribution p(y) to one described
by p(y|x). This change requires effort. How much effort?

The second law of thermodynamics tells us that we
need to put in at least as much work as the resulting free
energy difference, which is, on average over input x,

∆F [X,Y ] := 〈F [p(y|x)]〉p(x) − F [p(y)] , (2)

where F [p] denotes the generalized, or nonequilibrium
free energy, F [p] = 〈E〉p+kBT 〈ln[p]〉p,4 which has been
used by a number of authors to describe nonequilibrium
systems (see e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and ref-
erences therein). It reduces to the thermodynamic equilib-
rium free energy when evaluated on the equilibrium dis-
tribution.

3. LEAST EFFORT PRINCIPLE

Typically, a representation of a quantity of interest is pro-
duced for some purpose, e.g. communication and repro-
duction of the original source data [1, 2, 4], or work ex-
traction from a physical system [15, 16]. Let us define
the function u(x, y) to measure the general usefulness of a
specific data representation. Its average value,U [X,Y ] :=
〈u(x, y)〉p(x,y) then quantifies the utility of the represen-
tation.

We are now in a position to state a least effort principle
demanding that input data should be represented in such a
way that the average free energy change (which is a lower
bound on the effort) is minimized. Define the least effort,

3Keep in mind that p(y) = 〈p(y|x)〉p(x).
4kB is the Boltzmann constant, and T the temperature of a heat bath

surrounding the system. The assumption is that the system exchanges
only heat with the surroundings, and that the heat bath is large compared
to the system which may be driven arbitrarily far from equilibrium by a
change in external parameters. These parameter changes allow for doing
work on and extracting work from the system.



L(U), involved in representing x as y by the minimum
free energy change compatible with utility U :

L(U) := min
p(y|x)

∆F [X,Y ] (3)

s.t. U [X,Y ] = U.

The least effort function quantifies how conservative one
can be with the expenditure of energy while achieving the
intended utility. In other words, it measures how lazy one
can afford to be.

Observations related to least effort coding have previ-
ously come up in the context of language [17, 18]. The
effort of the speaker was modeled as the entropy of the
code signals, while the effort for the listener was modeled
as conditional entropy of the objects of reference, given
the signal [18]. The combined effort was minimized, and
the relative importance of the two terms was controlled
by a parameter. At a critical value, Zipf’s law [17] was
retrieved at a phase transition [18]. While related in gen-
eral spirit, the measure used in [18] is not the same as the
physical effort discussed here.5

4. RATE-DISTORTION CURVE IS A LEAST
EFFORT FUNCTION

Let a physical system that is in a state described by p(y)
have internal energy E(y), and let the energy associated
with the state described by p(y|x) be denoted by Ex(y).
Write the difference as E(x, y) := Ex(y) − E(y), and
denote its average by E[X,Y ] := 〈E(x, y)〉p(x,y). Then
the least effort involved in the change p(y) → p(y|x),
averaged over all x, is given by

∆F [X,Y ] = 〈Ex(y)〉p(y|x)p(x) − kBTH[Y |X]

−〈E(y)〉p(y) + kBTH[Y ] (4)
= E[X,Y ] + kBTI[X,Y ] . (5)

Now consider the case that the average energy does not
change, i.e. 〈Ex(y)〉p(y|x)p(x) = 〈E(y)〉p(y), in other
words, E[X,Y ] = 0. A simple example is given by a par-
ticle in a double well potential. For simplicity of the ex-
position, make the potential rectangular, having an energy
barrier of infinite energy between two wells of identical
width and identical energy, E0. Coarse grain the position
of the particle so that y = 0 (y = 1) denotes the particle in
the left (right) well. Then E(y = 0) = E(y = 1) = E0,
and hence 〈E(y)〉p(y) = E0. The particle can be forced
into either well by deformation of the potential. Let x ∈
R, and let the protocol that achieves this preparation of y
depend on x, so that, at the end of the protocol, y = θ(x).
Let, e.g.,

Ex(y) =

{
E0 if y = θ(x)
∞ else

, (6)

5Written in the notation used here, the effort in [18] was quan-
tified by λH[X|Y ] + (1 − λ)H[Y ], where the parameter λ
weights how much listener and speaker contribute to the total effort.
H[Y ] = −〈log[p(y)]〉p(y) denotes Shannon entropy, and H[X|Y ] =
−〈log[p(x|y)]〉p(x,y) conditional entropy.

and

p(y|x) =

{
1 if y = θ(x)
0 else

. (7)

Then 〈Ex(y)〉p(y|x) = E0, which is independent of x, and
therefore 〈Ex(y)〉p(y|x)p(x) = E0, for any p(x).

For classical systems and measurements, things can
often be set up in such a way that the assumptionE[X,Y ] =
0 is valid. It could, however be violated by quantum entan-
glement, and also possibly in living, metabolizing agents.
Both of these areas are outside the scope of this paper.

Under the assumption that the average energy does not
change, the free energy change is proportional to mutual
information:

∆F [X,Y ] = kBTI[X,Y ] . (8)

The least effort principle thus dictates minimization of
mutual information.

The optimization problem in Eq. (3) can be solved us-
ing the method of Lagrange multipliers. The constraint
is added to the objective function, with a Lagrange multi-
plier that effectively controls the trade-off between mini-
mal effort and achieved utility. For data compression, util-
ity is related to fidelity and can be identified with negative
distortion.

A least effort data compression then has to solve

min
p(y|x)

(
∆F [X,Y ] + λD[X,Y ]

)
. (9)

Comparison with Eq. (8) reveals that this is equivalent to
minp(y|x)

(
I[X,Y ] + λD̄[X,Y ]

)
, where D̄ = D/kBT is

the distortion measured in units of kBT . The solution to
this problem lies on the rate-distortion curve,R(D̄), as we
can see from comparison with the optimization problem in
Eq. (1). This shows that the rate-distortion curve is a least
effort function.

This finding is similar, but not identical to the formal
mapping of the rate-distortion function onto free energy
minimization in multiphase chemical equilibrium [3], and
to the statements in [19, 20], where large deviations the-
ory was used to show a formal analogy between the rate-
distortion function and the free energy of a chain of par-
ticles, i.e. the minimum amount of work needed to com-
press the chain. These formal analogies are based on iden-
tifying the distortion function with physical aspects of a
corresponding system, e.g. its energy. It was pointed out
in [20] that these formal analogies have some interpreta-
tional freedom. Specifically, the interpretation of the La-
grange multiplier that effectively controls the trade-off be-
tween distortion and compression depends on the details
of the analogy. In the mechanical analogy, it can be inter-
preted either as inverse temperature [19], or as a conjugate
force [20]. In contrast, the derivation given above retains
explicitly the distortion constraint and shows that physi-
cal temperature adjusts the units by rescaling the distor-
tion measure, or, alternatively, by rescaling the trade-off
parameter.



5. CHANNEL CAPACITY

The output messages y can also be interpreted as mea-
surement outcomes. If the measurement is useful, then
the observer learns something about x when given y. In
the absence of y, the observer’s best guess about x is ex-
pressed by the prior probability p(x), but when the mea-
surement is received, this changes to the posterior dis-
tribution p(x|y) = p(y|x)p(x)/p(y) (Bayes’ rule) [21].
Changing of the observer’s knowledge state from prior to
posterior comes at a cost; it takes a certain amount of ef-
fort to implement this change. By the same arguments
as above, the minimum amount of work that has to be
done (on average) is given by the free energy difference
〈F [p(x|y)]〉p(y) − F [p(x)].

This quantity also determines the maximum amount of
work that can be extracted from a physical system which
is (partially) described by x, by exploiting knowledge of
y. By convention, energy flowing into the system is pos-
itive, while energy flowing out of the system has a nega-
tive sign. Hence, at most F [p(x)] − 〈F [p(x|y)]〉p(y) can
be extracted as work. Assuming once again no change in
average energy, i.e. 〈E(x)〉p(x) = 〈Ey(x)〉p(x|y)p(y), we
have

F [p(x)]− 〈F [p(x|y)]〉p(y) = −kBTI[X,Y ] . (10)

Therefore, maximization of extractable work motivates max-
imization of mutual information.6

A simple example in which the condition 〈E(x)〉p(x) =
〈Ey(x)〉p(x|y)p(y) holds is that of measuring the x-position
of a particle in a box connected to a heat bath at tempera-
ture T . Let the length of the box be L. Then p(x) = 1/L
inside the box and zero outside. The energy of the particle
does not depend on its x-position within the box, where it
is given by the particle’s kinetic energy, EK , but the walls
of the box pose an infinite energy barrier. Thus we may
write:

E(x) =

{
EK ∀x ∈ [0, L]
∞ ∀x /∈ [0, L]

. (11)

The average energy is 〈E(x)〉p(x) = EK .
Knowing that the particle is confined e.g. to the left

side of the box results in a posterior of p(x|y = “LEFT”) =
2/L for x between 0 and L/2, and zero outside that range
(similarly for y = “RIGHT”). This distribution describes
a particle in a box of half of the length, but otherwise the
same as the original box. The particle’s energy is thenEK

inside the range of the smaller box, and infinite outside
that range:

Ey=“LEFT”(x) =

{
EK ∀x ∈ [0, L/2]
∞ ∀x /∈ [0, L/2]

, (12)

and

Ey=“RIGHT”(x) =

{
EK ∀x ∈ (L/2, L]
∞ ∀x /∈ (L/2, L]

, (13)

6Be reminded of the sign. I[X,Y ] is a non-negative quantity. Ex-
tracted work comes with a negative sign. Thus, more work can be ex-
tracted when I[X,Y ] is larger.

with an expected value of 〈Ey(x)〉p(x|y)p(y) = EK .7

Now, assume that the distribution p(y|x), which de-
scribes the data representation method, or, alternatively,
the measurement apparatus, be fixed. Then ask for the
physical system that best matches the measurement appa-
ratus in the sense that it allows for maximum work extrac-
tion, given the measurement (on average). Eq. (10) tells
us that the answer is given by Shannon’s channel capacity:

C = max
p(x)

I[X,Y ] . (14)

For a fixed channel, one chooses the source which would
allow for exploiting the knowledge obtained from the mes-
sages y towards maximum work extraction.

These are two sides of a coin: communicating more
information costs more effort, but the more informative a
measurement is about the state of a physical system, the
more work that can be extracted from the system given the
measurement outcome.

6. LEAST EFFORT MAXIMUM WORK
EXTRACTION

Imagine two correlated systems, X and Z with mutual
information I[X,Z]. An observer measures x, and repre-
sents it by y, which is obtained with probability p(y|x).
This representation, or measurement, can then be used to
extract work from system Z .

Knowledge of system Z , given y, is expressed by the
probability distribution p(z|y). By the same arguments as
above, the maximum amount of extractable work (aver-
aged over all measurements) is given by the free energy
difference F [p(z)]− 〈F [p(z|y)]〉p(y). Under the assump-
tion that the average energy does not change, this is given
by −kBTI[Y,Z].

The least effort data representation method which max-
imizes extractable work thus solves

min
p(y|x)

(I[X,Y ]− αI[Y, Z]) , (15)

The Lagrange multiplier α controls the trade-off between
work extractable from systemZ (which one wants to max-
imize) and necessary effort to represent system X (which
one wants to minimize). We recognize Eq. (15) as the
Information Bottleneck (IB) method [22], hereby lending
IB a new thermodynamic motivation: it finds the least ef-
fort representation of system X that allows for maximum
work extraction from a correlated system Z .

If X and Z are kept at two different temperatures, TX
and TZ , then α can be interpreted as the ratio TZ/TX : the
larger the temperature difference, the more beneficial it is
to keep relevant information, as it can be traded off for
more extractable work.

7. SUMMARY

Least effort coding leads to data representations that lie
on the rate distortion curve. Least effort is measured by

7This holds for all p(y), because 〈Ey(x)〉p(x|y) = EK , which is
independent of y.



the average free energy difference, quantifying the least
amount of physical work necessary to change a system de-
scribed by the average output distribution to one described
by the specific output distribution necessary to produce
output messages when the input is known. Information
loss has to do with thermodynamic efficiency: least effort
is proportional to mutual information (under the assump-
tion that there is no average energy change). Codes that
are efficient in a rate-distortion sense are also energeti-
cally efficient. In that sense, lossy compression is lazy
compression, because it minimizes physical effort.

Channel capacity, on the other hand, represents the
maximum amount of work that could be extracted from a
source (on average) given the channel’s output messages.
In contrast to the above, where the source is fixed and the
optimization is over encoding schemes, here the channel
is given. The maximum is then taken over all possible
sources, thus optimizing over physical systems for the best
match in terms of possible work extraction.

The Information Bottleneck method provides the means
of finding a minimum effort compression (or data repre-
sentation) that allows for maximum work extraction from
another system by exploiting correlations.
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