ICS 635 Machine Learning

15 week syllabus, two lectures per week. Lecture numbers indicated in bold font on the left.

- **1** Introductory Lecture: Introduction to machine learning.
- 2-3 Basic maths skills: review of important mathematical methods, such as differential equations, linear algebra, calculus of variations, probability theory specifics depend on student needs.
- 4-7 Regression:
 - Linear regression.
 - Bayesian Inference.
 - Maximum likelihood models.
 - Occam factors.
 - Selected applications to contemporary problems. Subject areas are listed below specifics are adjusted to student interests.
- **8-12** Artificial neural networks:
 - Back-propagation algorithm.
 - Recurrent networks.
 - Boltzmann machine.
 - Selected applications to contemporary problems. Subject areas are listed below specifics are adjusted to student interests.
- **12-17** Statistical Learning Theory:
 - VC-dimension
 - Structural risk minimization
 - Kernel trick
 - Support Vector Classification
 - Cross-validation
 - Support Vector Regression
 - Selected applications to contemporary problems. Subject areas are listed below specifics are adjusted to student interests.
- **18-25** Unsupervised learning:
 - Principal component analysis.
 - Cluster analysis: Concepts and issues.
 - Decision trees
 - Iterative re-allocation algorithms.
 - EM-algorithm.
 - Finding the number of clusters: stopping rules and stability arguments.
 - Selected applications to contemporary problems. Subject areas are listed below specifics are adjusted to student interests.
- **26-27** Time series analysis:
 - Linear predictive coding.
 - Adaptive filters.
 - Hidden Markov Models.
- **28-29** Graphical Models:
 - Bayesian Belief Networks.
 - Causal Networks.
 - Dynamic Bayesian Networks.
 - Selected applications to contemporary problems. Subject areas are listed below specifics are adjusted to student interests.
 - **30** Reinforcement learning.

Application subject areas include: robotics, computer vision, speech recognition, time series analysis, renewable energies, mathematical finance, geology, astronomy, learning formal grammars, medical imaging, and bioinformatics. Students are encouraged to add subjects.