In class, we learned that a function \(f : S \to T \) between metric spaces \((S, d_S)\) and \((T, d_T)\) is continuous if and only if the pre-image of every open set in \(T \) is open in \(S \). In other words, \(f \) is continuous if for all open \(U \subset T \), the pre-image \(f^{-1}(U) \subset S \) is open in \(S \).

Question 1. Let \(S, T, \) and \(R \) be metric spaces and let \(f : S \to T \) and \(g : T \to R \). We can define the composition function \(g \circ f : S \to R \) by

\[
g \circ f(s) = g(f(s)).
\]

(a) Let \(U \subset R \). Show that
\[
(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))
\]

(b) Use (a) to show that if \(f \) and \(g \) are continuous, then the composition \(g \circ f \) is also continuous.

Solution 1.

(a) We will show that
\[
(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))
\]

by showing that
\[
(g \circ f)^{-1}(U) \subset f^{-1}(g^{-1}(U)) \quad \text{and} \quad f^{-1}(g^{-1}(U)) \subset (g \circ f)^{-1}(U).
\]

For the first direction, let \(x \in (g \circ f)^{-1}(U) \). Then, \(g \circ f(x) \in U \). Thus, \(g(f(x)) \in U \). Since \(g(f(x)) \in U \), then \(f(x) \in g^{-1}(U) \). Continuing we get that \(x \in f^{-1}(g^{-1}(U)) \). Thus,
\[
(g \circ f)^{-1}(U) \subset f^{-1}(g^{-1}(U)).
\]

Conversely, assume that \(x \in f^{-1}(g^{-1}(U)) \). Then, \(f(x) \in g^{-1}(U) \). Furthermore, \(g(f(x)) \in U \). Thus, \(g \circ f(x) \in U \). So, \(x \in (g \circ f)^{-1}(U) \). So, \(f^{-1}(g^{-1}(U)) \subset (g \circ f)^{-1}(U) \).

Thus,
\[
(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)).
\]

(b) Let \(U \) be open in \(R \). Since \(g \) is continuous, then \(g^{-1}(U) \subset T \) is open. Since \(f \) is continuous, \(f^{-1}(g^{-1}(U)) \) is open. Thus, by (a), \((g \circ f)^{-1}(U) \) is open. So, \(g \circ f \) is continuous.

Question 2. Let \((S, d_S)\) and \((T, d_T)\) be metric spaces and let \(f : S \to T \).

(a) A function is called **constant** if \(f(s) = t_0 \) for all \(s \in S \). Show that any constant function is continuous.

(b) Show that if \(d_S \) is the discrete metric, then any function \(f \) is continuous.

Solution 2.

(a) Let \(U \) be an open set in \(T \). We will show that \(f^{-1}(U) \) is open. We do so in two cases: \(t_0 \in U \) and \(t_0 \notin U \).

If \(t_0 \in U \), then since \(f(s) = t_0 \) for all \(s \in S \), \(f^{-1}(U) = S \), which is always open in \(S \). If \(t_0 \notin U \), then \(f^{-1}(U) = \emptyset \), which is open. In either case, the pre-image of every open set is open. So the constant function \(f \) is continuous.

(b) Recall that in a discrete metric space, every subset is open. Thus, given any open \(U \subset T \), \(f^{-1}(U) \subset S \) is automatically open. Thus, \(f \) is continuous.

Question 3. The **floor function** \(f : \mathbb{R} \to \mathbb{R} \) is given by \(f(x) = \lfloor x \rfloor \), where \(\lfloor x \rfloor \) is the largest integer less than or equal to \(x \).
(a) Let $a \notin \mathbb{Z}$. Use an $\varepsilon - \delta$ proof to show that $f(x) = |x|$ is continuous at a.

(b) Let $a \in \mathbb{Z}$. Show that $f(x) = |x|$ is not continuous at a. To do so, find an $\varepsilon > 0$ such that for any $\delta > 0$, there exists an x with $|x - a| < \delta$ such that $|f(x) - f(a)| \geq \varepsilon$.

Solution 3.

(a) Let $a \notin \mathbb{Z}$. Given $\varepsilon > 0$, let $\delta = \min\{a - |a|, |a + 1| - a\}$. Since $a \notin \mathbb{Z}$, then $a \neq |a|$ and $|a + 1| \neq a$. Thus, $\delta > 0$. Notice that for all x satisfying $|x - a| < \delta$, we have that $f(x) = |x| = |a|$. Thus, $|f(x) - f(a)| = |f(a) - f(a)| = 0 < \varepsilon$. Thus, f is continuous at a.

(b) Let $a \in \mathbb{Z}$. Then, $f(a) = |a| = a$. Let $\varepsilon = 1/2$. Let $\delta > 0$ and consider $a - \delta/2$. Since $a \in \mathbb{Z}$, then $f(a - \delta/2) < a$. In particular, since f only takes on integral values, $f(a) - f(a - \delta/2) \geq 1$. Thus, $|f(a - \delta/2) - f(a)| \geq 1 > \varepsilon$.

Thus, f is discontinuous at a.

Question 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function.

(a) Assume that $f(x) \geq 0$ for all $x \in [0, 1]$. Show that if $f(c) > 0$ for some $c \in (0, 1)$, then

$$\int_0^1 f(x) \, dx > 0.$$

(b) Show that the above is no longer true if the term “continuous” is dropped. That is, given an example of a (necessarily discontinuous) function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \geq 0$ and $f(c) > 0$ for some $c \in (0, 1)$, yet

$$\int_0^1 f(x) \, dx = 0.$$

Solution 4.

(a) Since f is continuous, there exists a $\delta > 0$ such that whenever $|x - a| < \delta$, then $|f(x) - f(c)| < f(c)/2$. Thus, for x satisfying $|x - c| < \delta$ (which is equivalent to $-\delta < x - c < \delta$, we have that

$$-\frac{f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2}.$$

Using the first inequality and adding $f(c)$ to both sides, we get that

$$\frac{f(c)}{2} < f(x)$$

for all x satisfying $-\delta < x - c < \delta$. Since this last pair of inequalities is equivalent to $c - \delta < x < c + \delta$, for these x, we have that $\frac{f(c)}{2} < f(x)$. Thus,

$$0 < \frac{f(c)}{2} \cdot 2\delta = \int_{c-\delta}^{c+\delta} \frac{f(c)}{2} \, dx \leq \int_{c-\delta}^{c+\delta} f(x) \, dx \leq \int_0^1 f(x) \, dx.$$
(b) Consider the piecewise function given by

\[f(x) = \begin{cases}
0 & \text{if } x \neq 1/2 \\
1 & \text{if } x = 1/2
\end{cases} \]

Then \(f(x) \geq 0 \) and \(f(1/2) > 0 \), but \(\int_0^1 f(x) = 0 \).

Question 5. Recall that we can equip \(C([0,1]) \), the space of all continuous functions on \([0,1]\), with its \(L^1 \) metric, which is given by

\[d(f, g) = \int_0^1 |f(x) - g(x)| \, dx. \]

Consider the function \(\varphi : C([0,1]) \to \mathbb{R} \) given by

\[\varphi(f) = \int_0^1 f(x) \, dx. \]

In this question, we will show that \(\varphi \) is a continuous function.

(a) Show that

\[\left| \int_0^1 h(x) \, dx \right| \leq \int_0^1 |h(x)| \, dx. \]

Hint: We previously proved that \(-|a| \leq a \leq |a|\) for all \(a \in \mathbb{R} \).

(b) Use the above to give an \(\varepsilon-\delta \) proof that \(\varphi \) is continuous.

Solution 5.

(a) Notice that for all \(x \), \(-|h(x)| \leq h(x) \leq |h(x)|\). Integrating each side, we get that

\[-\int_0^1 |h(x)| \, dx \leq \int_0^1 h(x) \, dx \leq \int_0^1 |h(x)| \, dx. \]

This is equivalent to

\[\left| \int_0^1 h(x) \, dx \right| \leq \int_0^1 |h(x)| \, dx. \]

(b) We will show that \(\varphi \) is continuous at any \(f \in C([0,1]) \). Given \(\varepsilon > 0 \), let \(\delta = \varepsilon > 0 \). Then, for all \(g \in C([0,1]) \) satisfying

\[\int_0^1 |g(x) - f(x)| \, dx < \delta = \varepsilon, \]

we can use the above fact to get that

\[|\varphi(g) - \varphi(f)| = \left| \int_0^1 g(x) \, dx - \int_0^1 f(x) \, dx \right| = \left| \int_0^1 g(x) - f(x) \, dx \right| \leq \int_0^1 |g(x) - f(x)| \, dx < \varepsilon. \]

Thus, \(|\varphi(g) - \varphi(f)| < \varepsilon \), as desired. So, \(\varphi \) is continuous at any \(f \in C([0,1]) \) and thus \(\varphi \) is a continuous function.
Question 7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \not\in \mathbb{Q} \end{cases}$$

We will show that f is continuous only at $a = 0$.

(a) Use an $\varepsilon-\delta$ proof to show that $f(x)$ is continuous at $a = 0$.

(b) Use the theorem relating convergent sequences to continuous functions to show that if $a \neq 0$, then $f(x)$ is not continuous at a.

Solution 7.

(a) Given $\varepsilon > 0$, let $\delta = \varepsilon$. We will show that for any x satisfying $|x - 0| < \delta$, then $|f(x) - f(0)| < \varepsilon$. So, let x satisfy $|x| = |x - 0| < \delta = \varepsilon$. We take two cases: $x \in \mathbb{Q}$ or $x \not\in \mathbb{Q}$. If $x \in \mathbb{Q}$, then $f(x) = x$. Thus,

$$|f(x) - f(0)| = |x - 0| < \varepsilon = \delta.$$

In the second case, if $x \not\in \mathbb{Q}$, then $f(x) = 0$, so $|f(x) - f(0)| = |0 - 0| < \varepsilon$. In either case, we have that if $|x - 0| < \delta$, then $|f(x) - f(0)| < \varepsilon$. Thus, f is continuous at $a = 0$.

(b) Let $a \neq 0$. We will consider the two cases: $a \in \mathbb{Q}$ or $a \not\in \mathbb{Q}$. If $a \in \mathbb{Q}$, then, let x_n be a sequence of irrational numbers converging to a. If f were continuous at a, then $f(x_n) \to f(a)$. However, for all n, $f(x_n) = 0$, which converges to 0. However, since $a \in \mathbb{Q}$, $f(a) = a \neq 0$. Thus, $f(x_n) \not\to f(a)$. So, f is discontinuous at a. For the second case, assume that $a \not\in \mathbb{Q}$. Then, there exists a sequence of rational numbers x_n such that $x_n \to a$. If f were continuous at a, then $f(x_n) \to f(a)$. But $f(x_n) = x_n$ since $x_n \in \mathbb{Q}$. Thus, $f(x_n) = x_n \to a$. However, since $a \not\in \mathbb{Q}$, $f(a) = 0 \neq a$. Thus, $f(x_n) \not\to f(a)$. So, f is discontinuous at a. So, at any $a \neq 0$, f is discontinuous at a.
