Math 431 - Real Analysis I
Solutions to Homework due November 21

Question 1. The following questions use the ever-important Mean Value Theorem.

(a) Let \(f(x) \) be any quadratic polynomial \(f(x) = \alpha x^2 + \beta x + \gamma \). Consider the secant line joining the points \((t_1, f(t_1))\) and \((t_2, f(t_2))\). What is the slope of this secant line (in terms of \(\alpha, \beta, \gamma, \) and \(t_i \))? Simplify as much as possible.

(b) For the \(f \) in (a), the Mean Value Theorem guarantees the existence of some \(c \in (t_1, t_2) \) such that \(f'(c) \) is equal to the above slope. For this particular \(f \), what is this point \(c \)?

(c) Use the Mean Value Theorem to deduce the following inequality for all \(x, y \):

\[
|\sin y - \sin x| \leq |y - x|.
\]

Solution 1.

(a) The slope of the second line joining these points is given by

\[
\frac{f(t_1) - f(t_2)}{t_1 - t_2} = \frac{\alpha t_1^2 + \beta t_1 + \gamma - (\alpha t_2^2 + \beta t_2 + \gamma)}{t_1 - t_2} = \frac{\alpha(t_1^2 - t_2^2) + \beta(t_1 - t_2)}{t_1 - t_2} = \frac{(t_1 - t_2)[\alpha(t_1 + t_2) + \beta]}{t_1 - t_2} = \alpha(t_1 + t_2) + \beta.
\]

(b) Taking the derivative, we have that

\[
f'(x) = 2\alpha x + \beta.
\]

This will equal our mean slope when

\[
2\alpha x + \beta = \alpha(t_1 + t_2) + \beta,
\]

which occurs when \(x = \frac{t_1 + t_2}{2} \), the midpoint of \(t_1 \) and \(t_2 \).

(c) Consider \(f(x) = \sin x \). For any \(x < y \in \mathbb{R} \), we have that there exists some \(c \) such that \(x < c < y \) such that

\[
f'(c) = \frac{\sin y - \sin x}{y - x}.
\]

Since the derivative of \(\sin x \) is \(\cos x \), then \(|f'(c)| \leq 1 \). Thus, we have that

\[
\left| \frac{\sin y - \sin x}{y - x} \right| \leq 1.
\]

Cross-multiplying, we get that \(|\sin y - \sin x| \leq |y - x| \).

Question 2. Let \(f \) be a function that is continuous on \([a, b]\) and second differentiable (i.e., \(f'' \) exists) on \((a, b)\). Assume that the line segment joining the points \(A = (a, f(a)) \) and \(B = (b, f(b)) \) intersect the graph of \(f \) in a third point different from \(A \) and \(B \). Show that \(f''(c) = 0 \) for some \(c \in (a, b) \).

Solution 2. We will use the MVT thrice. First, label the point where the secant line intersect the graph as \(D = (d, f(d)) \). Then, notice that the slope of the secant line from \(A \) to \(B \) is the same as the slope of the secant line from \(A \) to \(D \) and from \(D \) to \(B \). Thus,

\[
\frac{f(b) - f(a)}{b - a} = \frac{f(d) - f(a)}{d - a} = \frac{f(b) - f(d)}{b - d}.
\]
Using the MVT on \([a, d]\), we get that there exists some \(\alpha \in (a, d)\) such that
\[
f'(\alpha) = \frac{f(d) - f(a)}{d - a}
\]
Similarly, using the MVT on \([d, b]\), there exists some \(\beta \in [d, b]\) such that
\[
f'(\beta) = \frac{f(d) - f(b)}{d - b}.
\]
Because these two secant slopes are equal, we have that
\[
f'(\alpha) = f'(\beta).
\]
Now, we can use MVT on the interval \([\alpha, \beta]\) with the differentiable function \(f'(x)\). Doing so, we get that there exists some \(c \in [\alpha, \beta]\) such that
\[
f''(c) = \frac{f'(\alpha) - f'(\beta)}{\alpha - \beta} = 0.
\]
Thus, \(f''(c) = 0\) as desired.

Question 3. Let \(f\) and \(g\) be differentiable functions. Show that if \(f'(x) = g'(x)\) for all \(x\), then \(f(x) = g(x) + k\) where \(k \in \mathbb{R}\).

Solution 3. Consider the function \(f(x) - g(x)\), which is also differentiable. Notice that its derivative is \(f'(x) - g'(x) = 0\). Thus, by a theorem in class, \(f(x) - g(x)\) is constant. So, \(f(x) - g(x) = k\) for some \(k \in \mathbb{R}\). Thus, \(f(x) = g(x) + k\).

Question 4. The hypotheses of the Mean Value Theorem are each quite important. They state that \(f\) must be continuous on \([a, b]\) and differentiable on \((a, b)\).

(a) Find a counterexample to the MVT if the hypothesis “\(f\) is differentiable on \((a, b)\)” is dropped. To do this, find a function that is continuous on \([a, b]\) but not differentiable on \((a, b)\) where
\[
f'(c) \neq \frac{f(b) - f(a)}{b - a}
\]
for all \(c\).

(b) Find a counterexample to the MVT if the hypothesis “\(f\) is continuous on \([a, b]\)” is dropped. To do this, find a function that is not continuous on all of \([a, b]\) but \(f\) is differentiable on \((a, b)\) where
\[
f'(c) \neq \frac{f(b) - f(a)}{b - a}
\]
for all \(c\).

Solution 4.

(a) Consider the function \(f(x) = |x|\), which is continuous on the closed interval \([-1, 1]\), but is not differentiable at 0. Notice that
\[
\frac{f(-1) - f(1)}{-1 - 1} = 0.
\]
However, at any \(c \in [-1, 1]\) where \(f'\) does exist, the derivative is always \(\pm 1\), but never 0.
(b) Consider the function defined on \([0, 1]\) given by

\[
f(x) = \begin{cases}
1 & \text{if } x = 0 \\
0 & \text{if } 0 < x \leq 1
\end{cases}
\]

Notice that \(f\) is discontinuous only at \(x = 0\). On \((0, 1)\), \(f'(x) = 0\) since it is constant on that open interval. However, the mean slope is given by

\[
\frac{f(1) - f(1)}{1 - 0} = -1.
\]

Thus, there is no \(c\) such that \(f'(c)\) is equal to the mean slope.

Question 5. Let \(a, r \in \mathbb{R}\) with \(r \neq 1\). Use induction to show that

\[
\sum_{k=0}^{n} ar^k = \frac{a - ar^{n+1}}{1 - r}
\]

for all \(n \geq 0\).

Solution 5. Let \(A(n)\) be the statement that

\[
\sum_{k=0}^{n} ar^k = \frac{a - ar^{n+1}}{1 - r}.
\]

We will show that \(A(n)\) is true for all \(n \geq 0\). For the base case, notice that

\[
\sum_{k=0}^{0} ar^k = ar^0 = a = a \cdot \frac{1 - r}{1 - r} = \frac{a - ar^0}{1 - r}.
\]

Thus, \(A(0)\) holds.

Now, assume that \(A(n)\) hold for some \(n \geq 0\). We will show that \(A(n+1)\) also holds. Starting with the left-hand side of the \(A(n+1)\) expression, we have that

\[
\sum_{k=0}^{n+1} ar^k = \sum_{k=0}^{n} ar^k + ar^{n+1} = \frac{a - ar^{n+1}}{1 - r} + ar^{n+1} = \frac{a - ar^{n+1} - ar^{n+2}}{1 - r} = \frac{a - ar^{(n+1)+1}}{1 - r}.
\]

Thus, \(A(n+1)\) is true. So, by induction, \(A(n)\) holds for all \(n \geq 0\).

Question 6. In this question, we will show that if \(|r| < 1\), then \(r^n \to 0\).

(a) State the binomial theorem. Use it to show that if \(b > 0\), then \((1 + b)^n > nb\).

(b) Prove that if \(|r| < 1\), then \(r^n \to 0\) using an \(\varepsilon - N\) proof. To do so, it would be wise to note that if \(|r| < 1\), then

\[
|r| = \frac{1}{1 + b}
\]

for some \(b > 0\).
Solution 6.

(a) The binomial theorem states that

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.\]

Thus, for \((1 + b)^n\), we have that

\[(1 + b)^n = 1 + nb + \binom{n}{2} b^2 + \cdots + b^n.\]

Since \(b > 0\), all the terms are positive. Thus, the sum is greater than or equal to each individual term and thus \((1 + b)^n > nb\).

(b) Let \(\varepsilon > 0\). Since \(|r| < 1\), then we can write it as

\[|r| = \frac{1}{1+b}\]

for some \(b > 0\). Consider \(N = \frac{1}{\varepsilon b} > 0\). Assume that \(n > \varepsilon = \frac{1}{\varepsilon b}\). Then, we have that

\[|r^n - 0| = |r|^n = \frac{1}{(1+b)^n}.\]

Since \((1+b)^n > nb\), we have that

\[\frac{1}{(1+b)^n} < \frac{1}{nb}\]

Since \(n > \frac{1}{\varepsilon b}\), we have that

\[\frac{1}{nb} < \varepsilon.\]

Thus, \(|r^n - 0| < \varepsilon\). So, we have that \(r^n \rightarrow 0\).